
GPT-3 as a probability model

Andrei-Tiberiu Alexandru

January 2022

1 Introduction

Generative pre-trained transformers (GPTs) are a type of neural network for sequence modelling that
is based on the transformer architecture. Recently, GPT-3, a large transformer model of around 175
billion parameters displayed state-of-the-art performance on several language tasks, and showcased
the ability to generate coherent and convincing writing on different topics[BMR+20]. Framing text
generation as a probability modelling task reveals that GPTs largely model the data in the same way
as another class of network: the recurrent neural network (RNN). And yet, in practice, GPTs seem to
outperform RNNs of comparable size. My hypothesis is that GPTs are better at fitting language data
than RNNs because they have a useful inductive bias. That is, a particular quality of the transformer
mechanism, one not found in the RNN, makes it easier to learn language data.

I believe this quality is related to how the two architectures use context to produce the next token
in a sequence. RNNs summarise the sequence into a history digest at each step, using a recurrence
relation to generate the next token. Transformers do not use recurrence, instead employing positional
embeddings coupled with an attention mechanism. The probability distributions these mechanisms in-
duce over the token to be predicted are conceptually the same, but in practice the types of distributions
GPT finds are more like natural language than the ones RNNs do.

One scenario in which the difference between attention and history digests is salient is data with
long-term dependencies. Intuitively, long-term, or non-local dependencies occur when one token in
a sequence depends on a previous token that is not immediately adjacent. This type of non-local
dependency is widely observed in language, where there are relationships between, e.g. a verb and
an object (“I ate steak” vs “I ate a tender, dry-aged sirloin steak”). This ability to model distant
dependencies better may be the source of the increased performance of GPTs over RNNs on language
data.

In this paper, I propose a probabilistic interpretation of the GPT, contrasting it with that of an
RNN. I also illustrate the behaviour of both on a toy dataset that contains non-local dependencies,
and interpret the inductive bias hypothesis in light of the results.

2 Background

Sequence modelling is the general task of mapping an input sequence to an output sequence. There are
many domains which fall under this category, like time series prediction, text or music generation, or
even sequences of actions of a reinforcement learning agent. In the case of text prediction, the output
sequence is a continuation of the input sequence, with one or more tokens – words or characters –
having been appended. In general, the probability of a sequence is:

Pr(x) = Pr(X1X2 . . . Xn)

= PrX1(x1)PrX2(x2|X1 = x1) . . .PrXt(xt|X1 = x1, X2 = x2, . . . , Xt−1 = xt−1)
(1)

One simplifying assumption that can be made is that the probability of each token is only dependent
on the n− 1 tokens that precede it, where n is less than or equal to the total number of tokens. This
type of model is called an n-gram; for example, if we used a bigram model where only the token
immediately preceding the token to be predicted is used, Equation 1 becomes:

Pr(x) = Pr(X1X2 . . . Xn)

= PrX1
(x1) · PrX2

(x2|X1 = x1)PrX3
(x3|X2 = x2) . . .PrXt

(xt|Xt−1 = xt−1)
(2)

1

This is useful because the probabilities of pairs or triplets are much larger than of a sequence of
many more tokens. (The joint probability of two random variables A and B is always larger than the
joint probability of A and B and another random variable C). On the other hand, by only looking
at a handful of previous tokens, everything else is discarded. By ignoring part of the context, the
model loses information that could make the prediction more accurate. We would like a way to encode
context without having to choose a size in advance.

This is where recurrent neural networks (RNNs) come in: instead of specifying what the context
should be, a neural network is used to learn it from the data. In other words, RNNs are useful for this
type of task because of their ability to represent contextual information. During training, an RNN
receives sequences one token at a time. Given the token and a previous hidden state – a summary
of the history the network has seen – the network outputs a new hidden state and a probability
distribution over tokens. The next token is generated by sampling from this probability distribution,
and the process is repeated until a special token is generated that marks the end of the sequence, or
until stopped by the user.

Training an RNN is conceptually equivalent to maximum likelihood estimation. The network
parameters are adjusted via gradient descent to minimise a loss function that corresponds to the
negative log-likelihood of the data. One problem with RNNs is that as the sequence length increases,
it becomes more and more difficult to propagate the loss back through the network due to decaying
gradients. Depending on the size of the weights, gradients either explode or vanish [BSF94], which
results in different failure scenarios, but just the same in a poorly-trained network. When predicting
a token at time step t, if there is a dependency on a token at timestep τ ≪ t, with vanishing gradients
it is difficult to use the token xτ to predict xt.

[HBF+01] summarises the difficulty with learning these long-term dependencies and proposes a set
of possible remedies. Of those, only one is widely used today: the long short-term memory (LSTM)
method[HS97]. In an LSTM, the simple nonlinearity in a RNN is replaced with a memory cell, which
is designed to facilitate remembering across longer sequences. The architecture specifics aren’t particu-
larly relevant here; it suffices to know that the LSTM indeed outperforms a standard RNN empirically
on different types of tasks. For example, [Gra13] applies it to text prediction on Wikipedia. This
application is interesting because articles tend to introduce key information first, and then reference it
later in the article. The author notes that although the capacity to memorise is markedly better (and
although a larger network and more training could improve it even further), it seems unrealistic to
expect coherence beyond short sentences. This is because the network hasn’t experienced the concepts
it is referring to — it knows of them, but does not understand them.

Machine translation is also a sequence modelling problem, where one input sequence in language A
is translated to an output sequence in language B. There are several difficulties in machine translation.
For example, the sequences may not be the same length (some languages are more verbose) or the
order of the words is not the same (in French, adjectives go after a noun). One way to overcome
these obstacles is to use RNNs in an encoder-decoder architecture [CVMG+14], where the input is
first encoded into a context vector, then decoded into the target sequence.

[BCB14] discuss the limitations of an encoder-decoder with a fixed-size context vector: longer
sequences are harder to encode into a single finite representation without losing information. Their
solution works as follows. The encoder computes for each token xj an annotation hj , whose role is to
summarise the rest of the input, not including the current token. To summarise both preceding and
following tokens, the encoder uses a bidirectional RNN which reads the input sequence left-to-right,
and again in reverse order. Given a set of annotations, the decoder then generates context vectors,
one for each token, by weighting the annotations by some weight αij . These weights are part of an
alignment model that is parameterised as a feedforward neural network, and essentially measure how
well an input and an output token match.

This scoring is a form of attention, which is one of the defining features in another type of archi-
tecture, the transformer [VSP+17]. Another notable characteristic of the transformer is that it does
not use recurrence to model sequential data. Instead, transformers use positional embeddings and
self-attention to determine which parts of the input are relevant for predicting the next token. This
is an advantage over RNNs: recurrence means that computation can be parallelised, which improves
computational efficiency. Although the use of attention generates sequences which humans rate as more
realistic, large-scale coherence is still a problem, so the earlier claim about language being grounded
in sensory experience may have some credit.

2

3 Generative pre-trained transformers

The generative pre-trained transformer (GPT) is a variant of the transformer used for text generation.
GPTs arose due to the scarcity of labelled data in downstream language tasks, which they circumvent
by first training on large corpora of unlabelled text like CommonCrawl[RSR+19] and then fine-tune on
the small datasets specific to the task to solve – a form of transfer learning. The authors note that the
attention structure of the GPT helps transfer the learning from the initial task to the downstream task
better than an LSTM would, and substantiate this with empirical ablation studies[RNSS18], which
might hint at the idea that a network that attention simply handles longer sequences better.

The initial unsupervised pre-training objective is:

L1(U) =
∑
i

logP (ui|ui−k, . . . , ui−1; Θ) (3)

Where k is the size of a context window and the conditional probability P is modelled using a neu-
ral network parameterised by Θ. Then, the supervised fine-tuning is done given a labelled dataset
consisting of pairs of input tokens x1, x2, . . . , xm and a label y. Its objective is:

L2(C) =
∑
(x,y)

logP (y|x1, . . . , xm) (4)

Where the probability P is obtained by applying softmax to the output of the last transformer block
multiplied by an added linear layer Wy:

P (y|x1, . . . , xm) = softmax(hl
mWy) (5)

L1 and L2 are combined into a final objective L3, which the network actually optimises:

L3(C) = L2(C) + λ · L1(C) (6)

These descriptions are from the GPT-1, the first iteration of the model[RNSS18]. As far as I can
tell, the only modification in later versions of GPT has been that fine-tuning has been altogether
eliminated leaving just the unsupervised learning objective L1. Starting with GPT-2[RWC+19], fine-
tuning is largely replaced by mechanism termed ‘few-shot learning’. A simple way of thinking of
few-shot learning is as learning from examples. This breaks down further into:

• Few-shot learning: given multiple examples, carry out a task described in the prompt (e.g.
“here are three summaries of “Infinite Jest” by David Foster Wallace, generate an additional
one”);

• One-shot learning: given one example, carry out a task (e.g. “here is exactly one summary of
the novel, generate an additional one”);

• Zero-shot learning: without being given any examples, carry out a task described in language
(e.g. “generate a summary of this novel”);

These regimes can be thought of as an even more extreme version of the earlier fine-tuning scenario,
where data was scarce. Zero-shot learning is naturally the most challenging: without any additional
data, we want to get a language model to perform a downstream task. That is, we want to find:

Pr(ct+1|c1, . . . , ct, X) = Pr(ct+1|c1, . . . , ct; Θ) (7)

We can discard X, the original data, because the information about is encoded in our parameters,
which cannot change. This is more like evaluating on a test example than fitting a model to a training
example! What accounts for the ability of GPT to ”learn” just from the context of a prompt, without
modifying its weights is still an open question.

In terms of architecture, except for the self-attention, every other layer in GPT is in use in most
neural networks: embeddings, dropout, fully-connected layers, layer normalisation, and a final fully-
connected layer to project the output to the vocabulary size. An interesting note is that GPT also
uses skip connections: some of the layers compute x = x + some_fn(x) instead of x = some_fn(x),
the idea being that it makes the network easier to train using gradient descent.

3

Presumably, the magic happens in the attention layer. But peering in, this is made up of the same
building blocks as other layers: matrix multiplications. The point of attention layers is to attend to
different parts of the sequence and see which are most relevant – by some measure of relevance. Each of
these parts is scored using a method called scaled dot-product similarity, and the attention scores are
propagated further into the network. This happens multiple times in parallel using several attention
”heads”, which look at different parts of the input.

Although it’s hard to find a probabilistic interpretation of the attention mechanism, it’s likely that
the effect it has on the resulting probability distribution over the vocabulary is governed by its ability
to handle long sequences. If an RNN has trouble with non-local dependencies, it will have a hard time
understanding motifs, writing styles, summaries, references. It’s like being able to remember only a
few sentences at a time; from there, it’s hard to extrapolate what an entire article or book should be
like.

A lot of what GPT can do that RNNs seem to struggle with boils down to being able to remember
very long sequences well. In the few-shot learning regime, it would be impossible to learn anything
meaningful from context if the context size were limited to only a few words. For example, it would
be impossible to do text summarisation if the network could not ”see” the full text.

That said, the size of the language model seems to have a big impact on how well it does in the
few-shot regime. In [BMR+20], GPT-3 is tested on the one of the classical tasks in NLP: predicting
which word a pronoun refers to [SLBBC20]. The experiments show that in all three few-shot learning
settings, a GPT of around 100 million parameters is only a few percentage points over the accuracy
for random guessing. The recipe for success seems to be that attention scales really well.

4 Experiments

The idea of these experiments is to investigate how well the two types architectures (GPTs and RNNs)
manage non-local dependencies. To do so, I’m looking at 2-digit integer addition. My data set consists
of randomly generated permutations of 2-digit numbers (e.g. 63 and 21), where the ground truth is
generated by adding the two numbers (= 84). The numbers are represented as sequences of digits:
[6, 3, 2, 1, 0, 8, 4] with an extra zero to account for the possibility of the sum being a 3-digit
number. Then, the network is trained on all but the last digit, and asked to predict this last digit.
During testing, the prompts are only the first two numbers, and the network predicts the result, one
digit at a time (i.e. given 4 digits, it predicts a 5th, which is then fed back in as another input, etc.)

I consider a sequence of [6, 3, 2, 1, 0, 8, 4] to not contain any non-local dependencies: all the
relevant information is contained in the first four digits. To artificially create long-term dependencies,
I’ll add some “decoy” numbers between the two numbers that are actually to be summed, to see
if this can distract the network. With one decoy, or a sequence length of 3, the above becomes
[6, 3, 0, 7, 2, 1, 0, 8, 4]. We would like the network to still be able to predict 84 even though
there is a 7 between the two terms to be summed.

The experiments look at the accuracy of GPTs and RNNs at predicting the three digits that make
up the sum as more and more decoys are added. If the results supported the hypothesis that GPTs
do better compared to RNNs in this scenario, we would see a drop in their performance that is less
abrupt than the RNNs’. I expect the accuracy to drop across models regardless, as these dependencies
are more challenging than the base case.

Experiments are run on networks with an approximately equal number of parameters. The smaller
models are around 200,000 parameters, and the larger ones are 400,000. I run four types of networks
for 20 and 50 epochs respectively, on exactly the same data. (The random dataset is generated
deterministically using a seed.) There is one configuration for GPT that matches the implementation
in the papers, with the code due to [Fal21, Kar21]. I use three RNNs: one with a default tanh
nonlinearity, an LSTM network and a GRU network. For details on these architectures please see the
code repo1. The experiments are run on a HPC comprising 10 AMD Epyc vCPUs, 2 NVIDIA A40
GPUs and 64Gb of RAM. I used Pytorch Lightning[FT19] for training using the DDP back-end and
16-bit floating-point precision.

1https://github.com/inwaves/prob-models/

4

https://github.com/inwaves/prob-models/

5 Preliminary results

5.1 Full-size models

Table 1: Prediction accuracy for full-size models
2-digit addition n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

GPT (20 epochs)
Training 99.83% 99.07% 99.48% 82.58% 64.07% 27.25% 34.42% 25.50% 16.71%

Test 99.70% 99.23% 99.30% 82.47% 61.20% 26.66% 33.62% 24.47% 15.59%

RNN (20 epochs)
Training 99.52% 98.55% 96.77% 84.80% 68.19% 6.41% 2.73% 4.31% 1.83%

Test 99.20% 98.10% 96.07% 84.67% 66.94% 6.26% 2.37% 3.49% 1.74%

LSTM (20 epochs)
Training 99.17% 34.25% 29.37% 21.44% 11.46% 7.09% 0.93% 7.59% 1.06%

Test 98.70% 28.53% 25.37% 17.47% 7.27% 5.43% 0.80% 6.17% 0.67%

GRU (20 epochs)
Training 99.71% 48.43% 59.34% 24.80% 21.41% 18.38% 16.46% 14.60% 12.44%

Test 99.50% 41.23% 55.07% 19.17% 15.23% 12.57% 11.80% 10.40% 9.03%

GPT (50 epochs)
Training 100.00% 99.65% 99.99% 99.88% 100.00% 99.96% 99.80% 99.95% 99.59%

Test 100.00% 99.63% 99.90% 99.97% 100.00% 100.00% 99.79% 99.98% 99.55%

RNN (50 epochs)
Training 100.00% 99.82% 99.64% 97.99% 94.91% 25.16% 24.15% 21.07% 14.58%

Test 100.00% 99.47% 99.50% 97.90% 94.01% 18.86% 18.43% 15.12% 10.32%

LSTM (50 epochs)
Training 100.00% 62.92% 65.82% 49.57% 31.08% 18.05% 15.77% 13.63% 0.96%

Test 99.80% 55.43% 59.87% 43.37% 21.57% 11.27% 10.50% 8.53% 0.70%

GRU (50 epochs)
Training 100.00% 87.20% 96.43% 58.87% 41.68% 39.24% 37.20% 33.39% 33.74%

Test 100.00% 79.70% 92.97% 47.67% 29.70% 27.67% 25.80% 24.00% 23.47%

Table 1 reports the results of the experiments for sequence lengths (n) ranging from 2-10. A
sequence length of 2 means there are no decoys in the input – just the two numbers to add – whereas
n = 10 means there were 8 numbers that were not included in the sum. What is immediately obvious
from all runs is that there is a decrease in accuracy as the sequence length increases. I interpret this
to mean that the decoys are working — they’re throwing off the network’s ability to predict the sum,
even though the terms of the sum are always the first and last numbers in the sequence. To a human,
this is an obvious pattern, but perhaps as the sequence length or number of digits are increased, we
would have trouble noticing it too. The decrease in accuracy is plotted in Figure 1.

The second observation is that performance for the GPT and RNN decrease almost in lockstep
until n = 6, with the RNN seemingly outperforming for n = 5 and 6, but not by much. From n = 7
onward however, both models’ accuracies drop off abruptly, from 61% to 26% for the GPT and 66%
to 6% for the RNN. The latter seems to lose accuracy faster, even though there is no particularity of
the implementation that should correlate with that exact sequence length.

Some results were unexpected: sequence length 6 onward for the RNN and n = 7 onward for GPT
seemed to show abrupt decreases in accuracy. This behaviour was consistent over multiple repetitions
of those experiments. There is nothing about the implementations that would warrant such a sudden
drop, but it’s likely that as n increases network just need more time to converge to 100% training set
accuracy.

At 50 epochs, the GPT converges for all n and its performance almost does not decrease at all as we
vary the sequence length. The RNN’s performance is also more stable, maintaining > 94% accuracy
until sequence length 6. From n = 7 onward, the accuracy abruptly decreases to 18% on the test set
– a less dramatic decrease than on 20 epochs, but in stark contrast to the GPT nonetheless.

The LSTM does very poorly when trained for only 20 epochs, and seems to be more robust during
50-epoch runs. The accuracy of the GRU sits somewhere in-between the LSTM and the RNN, and
exhibits the same decrease in performance as the two.

5.2 Half-size models

Table 2 reports the behaviour for half-size models (∼200k parameters each), which is broadly the same
as the full-sized models. There is a relatively steady drop in performance up to a point, where the
accuracy completely drops off to < 10%. Interestingly, at 20 epochs the GPT seems to be more robust
when half-size, maintaining > 89% accuracy up to sequence length 7, then jumping to only 7%. The
RNN is less robust, with relatively accurate predictions up to n = 5, then nonsense (the full-sized
model still output reasonable predictions for n = 6).

At 50 epochs, the half-sized GPT is less robust than the full-size: predictions for n = 9 and
10 are not at all accurate. The half-sized RNN is much less robust than its full-size counterpart,
with predictions from n = 6 onward being < 1% accurate, where previously they were at least 10%

5

Table 2: Prediction accuracy for half-size models
2-digit addition n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

GPT (20 epochs)
Training 86.52% 98.47% 93.39% 86.36% 97.30% 90.04% 8.04% 8.76% 6.35%

Test 86.80% 98.70% 94.33% 86.33% 97.37% 89.33% 7.43% 8.67% 6.27%

RNN (20 epochs)
Training 99.72% 96.78% 95.25% 88.90% 0.92% 0.93% 0.90% 0.95% 0.89%

Test 99.80% 96.33% 94.43% 89.77% 0.83% 0.80% 0.83% 0.90% 0.83%

LSTM (20 epochs)
Training 98.25% 30.80% 23.55% 18.22% 9.50% 8.00% 0.86% 5.19% 0.99%

Test 97.40% 26.60% 19.77% 13.93% 7.93% 6.93% 0.80% 4.03% 0.67%

GRU (20 epochs)
Training 99.72% 39.90% 27.21% 17.81% 15.50% 13.36% 11.27% 7.89% 1.01%

Test 99.20% 36.13% 21.93% 13.37% 11.57% 9.57% 7.33% 6.63% 0.70%

GPT (50 epochs)
Training 99.32% 99.02% 99.41% 100.00% 97.33% 96.06% 99.80% 7.91% 10.09%

Test 99.80% 99.03% 99.63% 100.00% 97.70% 96.30% 100.00% 9.13% 9.37%

RNN (50 epochs)
Training 100.00% 100.00% 99.57% 96.55% 0.89% 0.90% 0.99% 0.92% 9.37%

Test 100.00% 99.93% 98.97% 96.23% 0.67% 0.70% 0.60% 0.73% 0.77%

LSTM (50 epochs)
Training 99.98% 48.21% 23.55% 18.22% 9.50% 8.00% 0.86% 5.19% 0.99%

Test 99.80% 26.60% 19.77% 13.93% 7.93% 6.93% 0.80% 4.03% 0.67%

GRU (50 epochs)
Training 100.00% 75.15% 59.32% 27.90% 27.33% 22.13% 21.41% 10.04% 0.94%

Test 100.00% 69.17% 52.13% 21.07% 19.23% 15.70% 14.80% 7.17% 0.60%

accurate. The LSTM follows the same behaviour with an abrupt drop in accuracy early in the sequence
progression. Figure 2 plots the evolution of accuracy as sequence length is increased.

6 Discussion

The preliminary results seem to support the hypothesis that attention indeed confers the ability to
remember and use more of the tokens in a long sequence. All networks were presented with inputs of
the same size, but after a point the RNNs are unable to use the first two tokens of the sequence, and
cannot compute the sum. It seems like there is a hard cut-off for the RNNs – somewhere around n = 6 –
after which they just cannot predict correctly. This isn’t the case; experiments with much larger RNNs
(∼1,000,000 parameters) trained for longer show that they can achieve similar performance as GPT,
but they need more computation. This makes the difference between the two types of architectures
quantitative: an RNN can generate the types of sequences GPT does, just not as easily.

So a key point of the performance GPTs achieve in the few-shot context is likely due to this bias
that lets it extract information from large bodies of text. Still, this doesn’t explain zero-shot prompts
like ”translate the word ’cheese’ to French”. Maybe this is possible because in the text in the data
set, the words ’cheese’ and ’French’ were associated with ’fromage’. But this is a just-so explanation:
they could just as well be surrounded by a recipe for an omelette, with no reference to the translation.
How exactly prompting works is not yet known, and prompt engineering – designing prompts such
that they elicit the answer we want – is emerging as an active area of research.

6

Figure 1: Test accuracy of full-size model as sequence length is increased.

Figure 2: Test accuracy of half-size model as sequence length is increased.

7

References

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[BMR+20] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,
1994.

[CVMG+14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014.

[Fal21] William Falcon. mingpt: A minimal pytorch lightning re-implementation of the
openai gpt (generative pretrained transformer) training. https://github.com/

williamFalcon/minGPT, 2021.

[FT19] William Falcon and The PyTorch Lightning team. PyTorch Lightning, 3 2019.

[Gra13] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[HBF+01] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies, 2001.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[Kar21] Andrej Karpathy. mingpt: A minimal pytorch re-implementation of the openai gpt
(generative pretrained transformer) training. https://github.com/karpathy/minGPT,
2021.

[RNSS18] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving lan-
guage understanding by generative pre-training. 2018.

[RSR+19] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

[RWC+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[SLBBC20] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande:
An adversarial winograd schema challenge at scale. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, pages 8732–8740, 2020.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

8

https://github.com/williamFalcon/minGPT
https://github.com/williamFalcon/minGPT
https://github.com/karpathy/minGPT

	Introduction
	Background
	Generative pre-trained transformers
	Experiments
	Preliminary results
	Full-size models
	Half-size models

	Discussion

