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Abstract

In many situations, given a set of observations, we would like to find the factors which cause or
influence the data we observe. To learn these factors, we can use a deep generative model such as
a variational auto-encoder (VAE), which maps the data to a latent space. However, a limitation
of the VAE is that it is not identifiable, in the sense that two different sets of parameters may
yield the same model. To address this, it is possible to augment the VAE in such a way that
it becomes identifiable while remaining capable of flexible representations. This paper explores
invariant causal representation learning (ICaRL), an algorithm for causal representation learning
with possible applications in causal discovery and out-of-distribution generalisation.

1 Introduction

Causal inference [Pea09] is a paradigm at the intersection of statistics, social science and machine
learning concerned with the study of cause and effect. It is often framed as a more nuanced alternative
to statistical inference, the distinction being that the latter is only capable of capturing correlation
between random variables, whereas the former can make statements about causes. One of the most
important applications of causal inference is counterfactual reasoning, a way of asking the question:
“what would happen if?” In this sort of analysis, data that is collected under one regime is used
to estimate a quantity of interest under a slightly different regime. The difference between the two
regimes is usually given by an intervention – the act of modifying a variable to some known value to
observe the downstream effects.

One of the most widely used formalisms in causal inference is that of a structural causal model
(SCM) and its representation as a causal graph. A structural causal model is a set of equations of the
form

Si : Xi ← fi(Pa(Xi), Ni)

where Xi are random variables and Pa(Xi) are its parents – the random variables that cause Xi —
and Ni are independent noise random variables [Arj20]. An intervention is then modelled as replacing
one or several of the equations

Sei : Xe
i ← fe

i (Pa(Xe
i ), N

e
i )

[PBM16] considers there to be two broad categories of interventions: do-interventions which set the
value of a variable to a fixed artifical value (corresponding to the do-calculus [Pea09] interpretation of
an intervention) and soft interventions that are alterations to the noise component.

SCMs are equivalent to causal graphical models, represented as directed acyclic graphs G = (V,E)
comprising a set of nodes or vertices and edges which connect them. Figure 1 shows an example of
a causal graph and its associated SCM, both depicting a causal structure we’ll return to in Section
2. Interventions on causal graphs are sometimes called “mutilations”, because they equate to various
changes to the graph structure, such as deleting or adding edges.

While interventions are a useful concept for thinking about changes to the causal structure, in
many cases it’s impossible or unethical to perform an intervention. Furthermore, we sometimes don’t
even know the SCM or underlying causal graph, and yet we would like to estimate some quantity
counterfactually. In these situations, it would be useful to infer an underlying causal structure from
data that has already been observed, a process known as causal discovery.
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Figure 1: A causal graph and its associated structural causal model. In this example, E is a determin-
istic environment variable, X is an observed random variable that arises from a combination of Z1 and
Z2, and Y is another observed variable. The functions σi introduce noise into the structural equation
model, and their output depends on the environment.

Identifying the variables in a causal graph is conceptually similar to independent component analysis
(ICA)[Com94]. Given an observed variable Y and a set of unobserved variables X which cause Y in
some form, ICA tries to find the inverse of the mapping

f(X) = Y

For linear ICA, we can express f as a linear combination of the sources X:

f(X) = MX+ v

where v is noise. For nonlinear ICA, f is an unknown invertible transformation of the sources. This
is very closely related to deep generative models, so a common approach is to train a deep generative
model like a variational autoencoder (VAE) [KW13] to reconstruct the data in an unsupervised fashion.
The VAE maps each input to a latent space, then generates an output based on a sample of latent
variables from the space. This topic is sometimes also called disentanglement [SvKT+21].

A limitation of the VAE is that the model is not identifiable. Identifiability of a model is defined
by [KKMH20] as

∀(θθθ,θθθ′) : pθθθ(x) = pθθθ′(x) =⇒ θθθ = θθθ′

If the VAE were identifiable, after training the model to approximate pθ∗(x|z), we could reuse θ∗

to calculate the true prior over latents pθ∗(z) and the conditional pθ∗(z|x), which is what we really
care about from a disentanglement perspective: we want to know the distribution over latents z that
influence our data.

One improvement to the VAE comes in the form of the identifiable variational autoencoder (iVAE)
[KKMH20], which uses a factorised prior over latents z. The model assumes another observed variable
u, which could be “for example, the time index in a time series, previous data points in a time series,
some kind of (possibly noisy) class label, or another concurrently observed variable” [KKMH20] It
then uses as prior p(z|u) instead of p(z).

Out-of-distribution (OOD) generalisation refers to the ability of models to generalise when the
data shifts in some systematic way across multiple environments of interest E . OOD is a challenge for
neural networks because the training data is assumed to be independent and identically distributed –
an assumption which does not always hold. In practice, neural networks have been observed to learn
spurious correlations that leads to failing in surprising ways on slightly different data. A canonical
example comes from [BVHP18], where an image recognition network was found to misclassify cows on
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Figure 2: The causal graph blueprint used by ICaRL. Observed variables are shaeded grey: E is an
environment variable, Y is a target variable of interest, and O is the observed data that is assumed to
arise as a combination of latent variables Xpi

, Xcj . Solid edges are relationships likely to be invariant
across environments, whereas the dotted relationships may or may not hold from a domain to the
other. Figure from [LWHLS21].

beaches as camels, because it was learning the correlation cow - grass, camel - sand. We want to be
able to detect when a network picks up on this sort of correlation, or ideally prevent it altogether.

The main insight that brings together OOD generalisation, causal inference and independent com-
ponent analysis is that fundamental characteristics and mechanisms that we want networks to learn
are invariant across environments. In the earlier example, a cow is invariant to the background of the
image – it should still be classified as a cow. From a causality perspective, invariant features tend to
be causal features – factors which give rise to the data. Learning these features means that a network
can combine them in arbitrary ways to recognise new data [SvKT+21].

One notable approach for learning invariant representations is the invariant risk minimisation (IRM)
algorithm [ABGLP19]. It simultaneously learns a representation of the data, ϕ(x) and a classifier w∗

such that w ◦ϕ is optimal across all environments. IRM has its limitations – mainly that in this form,
the optimisation task is prohibitively difficult – so more and more research is focussing on simple ways
to find the invariant representation ϕ.

In “Invariant Causal Representation Learning for Out of Distribution Generalization” [LWHLS21],
the authors remove the conditional factorised prior requirement and recover an identifiable VAE with
a more general conditional prior belonging to an exponential family. This allows them to recover the
causes of a target variable Y in such a way that they can train an invariant predictor similar to IRM.
In this paper, I partially replicate the results of the non-factorised identifiable VAE from a causal
discovery perspective on synthetic data.

2 Preliminaries

The variational auto-encoder (VAE) [KW13] is a deep latent variable model of the form:

pθθθ(x, z) = pθθθ(x|z)pθθθ(z)

where θθθ is a vector of parameters, z is a vector of latent variables and x are the observed data. The VAE
jointly trains a generative model of this form alongside an inference model qϕ(z|x) that approximates
the posterior pθθθ(z|x) by maximising the evidence lower bound (ELBO) of the dataset D:

L(θθθ, ϕ) := EqD

[
Eqϕ(z|x)[log pθθθ(x, z)− log qϕ(z|x)]

]
The identifiable VAE [KKMH20] additionally assumes that the prior p(z) is conditionally factorised

over an additional observed variable u, i.e. that its probability density function is given by:

pT,λλλ(z|u) =
∏
i

Qi(zi)

Zi(u)
exp

[
k∑

j=1

Tij(zi)λij(u)

]
where Qi is the base measure, Zi(u) is the normalising constant, Ti are the sufficient statistics and
λλλi(u) the corresponding parameters which depend on the additional observed variable u.
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3 Invariant causal representation learning (ICaRL)

Invariant causal representation learning (ICaRL) [LWHLS21] is a three-part algorithm. It operates on
a general causal graph (Figure 2) and, under certain assumptions, provides guarantees regarding the
generalisation capability and identifiability of the algorithm. The three phases are as follows:

1. Recovering latents with a non-factorised identifiable VAE (nf-iVAE). This is a modification
to the identifiable VAE such that the conditional prior over the latents is no longer required to be
factorised. This is the main contribution of the ICaRL paper, in which they show that relaxing
the condition still yields an identifiable VAE under certain assumptions. Specifically, the nf-
iVAE assumes a prior from a general exponential family, the idea being that a more flexible
distribution can capture arbitrary dependencies between the latents. An exponential family is a
set of distributions whose probability density functions can be expressed as:

p(X) =
Q(X)

Z(θθθ)
exp(⟨T(X), θθθ⟩)

The nf-iVAE is used to estimate a distribution over latent variables given the data, which is fed
into the next phase.

2. Discovering direct causes. In the second phase, a skeleton graph is recovered from the latents
using the Peter-Clark algorithm [SGSH00], which is used to identify the neighbours of a variable
of interest Y . Given Ne(Y), we want to discover the parents of Y , Pa(Y). This is done through
the kernel conditional independence test [ZPJS12]. The idea behind the test is that given two
variables Z1, Z2, their conditional dependence increases when we additionally condition on Y ,
only when they both cause Y. The special case where the target variable has only one cause is
addressed separately.

3. Training an invariant predictor. Finally, given an invariant representation of Y in the form of
its parents Pa(Y), a predictor is learned which is expected to be optimal across environments
according to the IRM principle [ABGLP19]. This means that the predictor should generalise
well out-of-distribution.

4 Experiments

I ran two sets of experiments, one on synthetic data and the other on the dSprites dataset [MHHL17].
The hyperparameters are the same on both experiments. Specifically, no hyperparameter optimisation
was done – the values used are the defaults from the implementation of iVAE [KKMH20].

4.1 Synthetic data

The synthetic data experiment follows [LWHLS21] and uses the following structural causal model:

Z1 ← N (0, σ1(E))

Y ← N (0, σ2(E)) + Z1

Z2 ← N (0, σ3(E)) + Y

The data is generated from a simplified model, following Appendix K in the ICARL paper [LWHLS21],
i.e. that σ1 = 1, σ2 = 0, σ3 = {0.2, 2, 100}, with the final value of σ3 used for testing. We draw 1000
samples for Z1, Y, Z2 for each of the three environments. This simple construction is easy to study
because we can use the environment variable E as the additional observed variable required by the
iVAE.
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Figure 3: An example of the images in the dSprites [MHHL17] dataset. There are three shapes whose
size, orientation and position in the frame change.

4.2 dSprites

The motivation for using dSprites comes from the paper “Visual representation learning does not
generalize strongly in the same domain” [SvKT+21]. There, authors find that many common neural
network architectures are largely unable to recover the latents (or sources, from an ICA perspective)
that give rise to the observed data. One of the models they benchmark, the β-VAE [HMP+16], is very
similar to the approach used by the iVAE , so it would be interesting to see whether the identifiability
aspect of the latter enables it to do generalise better.

The dSprites dataset is a set of 64x64 images containing a white shape on a black background
Figure 3. Each image is generated through a combination of 5 latent factors:

• Shape: square, ellipse, heart

• Scale: 6 values linearly spaced in [0.5, 1]

• Orientation: 40 values in [0, 2 pi]

• Position X: 32 values in [0, 1]

• Position Y: 32 values in [0, 1]

With all possible combinations contained in the dataset.
In [SvKT+21], the data is split systematically along these factors of variation to test interpolation,

extrapolation and composition. In my experiments, the training set contains all images except the
ones where the shape is in the bottom-right corner, and the test set contains just the latter. What I
would like to see here is that the trained nf-iVAE has the capacity to infer the correct latents given
an image from the test set. Specifically, it should map a test image to a set of latent values such that
when an image is generated with those latent values, it matches the initial test image.

For dSprites, there is no additional observed variable u, so one must be generated somehow such
that we can apply the nf-iVAE with a conditional prior. I decided to use one of the true latents, the
shape (circle, heart, square). The downside of this is that it reveals information about the dataset,
effectively making the problem easier; the upside is that we can now use the nf-iVAE to try and
disentangle the other latents.
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Figure 4: One of the graphs recovered by Peter-Clark algorithm on latents estimated by a non-factorised
identifiable variational autoencoder. This is using synthetic data, and approximately recovers the
relationship between the two latents (Z1, Z2 here appear as X1, X2) and the observed variable Y (here
corresponding to X3. This graph isn’t quite correct: the edge from X3 should be directed toward X2,
and the edge from X1 to X3. Generated using the causal-learn library [cla20].

4.3 Implementation

The implementation of the nf-iVAE is adapted from the source code1 provided by the original authors of
[KKMH20]. The network is implemented in Pytorch [PGM+19]. I used two different implementations
of the Peter-Clark algorithm, one from the Causal Discovery Toolbox library [KG19] and the other
from the causal-learn library [cla20]. The kernel conditional independence test is one of the options
the PC algorithm can use to perform an independence test, and in both cases I use the KCI test
implementation that ships with the library.

4.4 Performance metric

While the nf-iVAE maximises the evidence lower bound of the data (ELBO), in the original iVAE
paper an additional metric is used: the mean correlation coefficient (MCC) between the true latents
and the estimated latents [KKMH20]. A high MCC score means that the network has successfully
recovered the correct sources of the data.

5 Results

On the synthetic data, the nf-iVAE seems to successfully recover the latents, with MCC scores above
0.9. When using these latents as inputs to the PC algorithm, the graphs that are generated differ from
one trained network to another, even where the training conditions were identical. Sometimes these
differences are not material: for example, Figure 4 and Figure 5 are equivalent, since the absolute
position of a node does not matter at all. On the other hand, sometimes they vary widely enough that
there are extra edges and self-loops (variables seemingly causing themselves) that do not respect the
causal structure of the underlying model, for example as in Figure 6.

One additional issue is that the graphs contain edges that point in both directions, which is not
useful at all from a causal perspective. What we’d like to see in this case is that Y is caused by Z1

(graph has an edge Z1 → Y ) and in turn causes Z2 (graph has directed edge Y → Z2). Beyond the
causal discovery perspective, this is needed by ICaRL to determine the parents of a variable such that

1https://github.com/siamakz/iVAE
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Figure 5: Another example of a graph recovered by the Peter-Clark algorithm based on the latents
inferred by the nf-iVAE. This graph is equivalent to the previous one, and again does not capture the
correct direction of causality between variables. Generted using the Causal Discovery Toolbox [KG19].

it can use this invariant representation of Y to learn an optimal classifier across environments. In other
words, if it’s not possible to recover the parents, ICaRL does not generalise.

The experiments on dSprites did not converge, with the nf-iVAE struggling to learn an approximate
distribution over the latents. It’s likely that this was due to an implementation error when adapting
the networks implementing the VAE to take in the extra latent variable.

One possible limitation of ICaRL I noticed during the experiments was that the kernel conditional
independence test is very slow for large inputs. In [ZPJS12], the method is found to have O(n3)
complexity. In practice this severely constrains the dimensionality of the latent space of the nf-iVAE
and implicitly limits the number of sources we could reasonably disentangle. I can imagine complicated
enough causal graphs that the method becomes infeasible (for example, for medical applications), but
it’s unclear to me just how big of a problem this is.

6 Further work

It would be interesting to see a performance comparison of end-to-end ICaRL for out-of-distribution
generalisation against alternative approaches in a controlled benchmark like DomainBed [GLP20].
Another benchmark for OOD generalisation is presented in [SvKT+21], where the authors find that
most common architectures do not generalise OOD in the visual domain. Ultimately, we’d like to
be able to learn models that understand how data arises as a combination of sources. This type of
model could have many useful properties: it would generalise robustly across environments, since causal
factors seem to be broadly invariant across domains and it would also allow us to study counterfactuals,
because we could arbitrarily modify recovered latents to explore what would happen in a situation that
was not observed in the data.
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Figure 6: Example of a nonsensical graph sometimes output by the PC algorithm on the latent factors
estimated by the nf-iVAE. This causal graph does not encode anything useful: every variable causes
every variable, including itself.
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