
Contents

1 Introduction 6

1.1 Generalisation and inductive bias . 7

2 Notation and key concepts 9

2.1 Univariate regression . 9

2.2 Neural networks . 10

2.3 Natural cubic splines . 11

3 The mystery of generalisation 13

3.1 Learnability and generalisation . 13

3.2 Implicit bias of the optimisation process 14

3.3 Approximation theory . 16

3.4 Learning regimes and the neural tangent kernel 16

3.5 Loss landscapes . 18

3.6 Double descent and grokking . 20

3.7 Out-of-distribution generalisation . 22

3.8 Summary . 24

4 Gradient descent is biased toward smooth functions 25

4.1 Problem set-up . 25

4.2 Results for univariate regression . 26

4.3 Experimental set-up . 28

4.3.1 Data . 28

4.3.2 Network architectures . 30

4.3.3 Experiments . 31

4.3.4 Hardware and software . 34

5 Findings 35

5.1 Replication . 35

5.2 Other experiments . 38

5.3 Interpolation and extrapolation . 44

6 Conclusion and further work 45

4

A Supplementary material 52

A.1 Comparison of runtimes . 52

A.2 Additional figures . 52

A.2.1 Other experiments . 52

A.2.2 Results on interpolation . 55

A.2.3 Results on extrapolation . 57

5

List of Figures

2.1 Neural network architecture . 10

3.1 Geometric characterisation of the implicit bias of gradient descent 15

3.2 Illustration of double descent . 21

3.3 Systematic train-test splits for out-of-distribution generalisation 22

4.1 Datasets used in the experiments . 29

4.2 Sine interpolation dataset example . 30

5.1 Results of the baseline experiments on univariate regression 37

5.2 Results on constant and linear datasets . 38

5.3 Difference in inductive bias between ASI shallow networks and deeper net-

works of the same total number of parameters. 39

5.4 Results for different optimiser choices . 40

5.5 Results for different parameter initialisation schemes 41

5.6 Results for different data adjustments . 42

5.7 Results for different loss functions . 43

5.8 Double descent behaviour on one of the baseline experiments 44

5.9 Interpolation and extrapolation experiments on the sine dataset 44

A.1 Network fits for different activation functions 52

A.2 Results for different activation functions 53

A.3 Example fits on sine dataset . 54

A.4 Double descent on non-ASI network . 54

A.5 Variational error on interpolation using ASI shallow networks 55

A.6 Variational error on interpolation using deeper non-ASI networks 56

A.7 Variational error on extrapolation using ASI shallow networks 57

A.8 Variational error on extrapolation using deeper, non-ASI networks 58

6

Chapter 1

Introduction

In the past 5 years there have been breakthroughs on machine learning tasks that were

previously considered to be decades away. Machine learning systems can now play Go,

chess [1] and even the real-time strategy game Starcraft [2]. They can generate images

from text, even those which contain unlikely objects [3], and can perform reasoning with

as little as a handful of examples [4]. Some models can optimise traffic [5], predict the

structure of proteins [6] and perform relatively complex mathematical manipulations [7].

There is even a system which can perform several unrelated tasks without explicitly being

trained for each in part [8]. How can we account for these successes?

At least part of the story is that with increased interest and funding, machine learning

has been scaled up by several orders of magnitude. Today’s systems are larger, trained

on more data and on more powerful, dedicated hardware than their predecessors. In a

sense, the field has benefitted from better hardware and engineering.

More recently, there has been a paradigm shift owing to the advent of large language

models. Early work showed that language models trained unsupervised on large amounts

of data performed well at natural language tasks with only a few examples [9]. This was a

major improvement on previous systems which required fine-tuning on datasets for each

downstream task; often, this data is infeasible or expensive to collect. Scaling up these

models made them even more accurate, with even less task-specific input [10]. Today,

we have models with hundreds of billions of parameters that can generate useful outputs

simply through prompting – the so-called “zero-shot” setting. What’s more, it looks like

these large models are under-fitted [11].

In some form or another, these recent advances rely on a particular sort of machine

learning approach: neural networks. And yet, when it comes to neural networks, we face

something that we could reasonably call “the mystery of generalisation”. Simply put, we

do not know exactly why deep neural networks work so well. In this paper, we’ll look at

a possible explanation for this mystery that is related to both the optimisation process

and the network architecture.

7

1.1 Generalisation and inductive bias

In the logical sense, generalisation refers to the process of moving from the particular to

the general. It’s likely that generalisation is a key component of intelligence, in the sense

that it enables the extraction of concepts and rules that can be re-used and re-composed

in new ways. In the case of machine learning systems, by the term generalisation we mean

the capability of a system to do well not just on training data – the data which the model

is fit to – but also on test data (which may be unlike the training data; see Section 3.7).

It is clear that a large factor in generalisation capability is data itself. Without enough

data, it is impossible to isolate exactly which concept to learn. But data is not the

only factor. There are other mechanisms which influence how a system might learn

a particular sort of concept; we collectively call these the “inductive bias” of a system.

Intuitively, the inductive bias is anything other than the data that determines the solution.

Humans have inductive biases too, some of which we owe to evolution. For example, most

people find sweet treats enjoyable without conducting large-scale analyses. This is because

sugar is high in calories, and for the majority of our species’ history, eating sugar was

unambiguously a good idea. We learn the hypothesis “Eating sugar is good” with only a

handful of data points (or raspberries).

Neural networks also have inductive biases which determine the sorts of solutions that

networks tend to find. We know at a high level that inductive bias differs between ar-

chitectures, but we are not often in a position where we can characterise this bias. For

example, we know that convolutional neural networks applied to image classification are

approximately translation invariant, which means that they can correctly label an image

of a bicycle, regardless of where in the image the bicycle is. On the other hand, when ap-

plied to object localisation, these networks should be translation equivariant: they should

“activate” where there is an object in the image, and nowhere else. We know that CNNs

are biased in this way because they are explicitly designed to; we cannot usually say this

for other architectures. Even so, we do not have a complete picture of the inductive bias

of CNNs.

Why do we ultimately want to understand these inductive biases? On one level, we

might like to build even better systems, by finding which inductive biases are useful. It

might be the case that some inductive biases are more well-suited to the types of tasks

we apply machine learning to. These will appear to be more generally capable, but they

are likely not universal. For example, in recent years, the transformer architecture, with

applications in language [10] and vision [12], seems to be displacing dedicated network

architectures. What makes the transformer perform so well across different types of tasks?

Another reason to want to understand inductive biases – and potentially a more conse-

quential one – is that we need to know what goes on inside networks. At the moment,

neural networks are generally opaque. We do not know what sort of “reasoning”, if any,

8

goes on inside the network. Perhaps for the most part, this is not an issue, as long as

it is possible to validate that the network as a whole behaves in a desirable way. But as

machine learning systems become more complex, as we deploy them at larger scales and

on more open-ended domains, it’s likely that humans will no longer be able to validate

their outputs as correct or incorrect.

In this work, we evaluate the inductive bias of neural networks on the univariate regression

task. We start from an interesting set of results regarding the implicit bias of gradient

descent, the optimisation algorithm most often used to train neural networks. In [13],

gradient descent is characterised as biased toward particular sorts of smooth functions

which solve a closed-form variational problem. In practice, using this characterisation

we could control the types of functions a trained network represents by changing how its

parameters are initialised.

Our main contributions are as follows:

� we replicate the results in [13] for univariate regression;

� we test the robustness of these results under different experimental conditions by

varying key hyperparameters such as learning rate, model size and optimiser

� we additionally evaluate the inductive bias on two separate generalisation tasks,

interpolation and extrapolation, by obscuring parts of the training set;

The paper starts with a review of the relevant concepts and literature followed by a

description of the problem and experimental set-ups, and finishes with findings and their

interpretations.

9

Chapter 2

Notation and key concepts

Before we review the relevant literature, it’s useful to introduce three concepts that will

reoccur throughout this paper. We start with univariate regression, since it is the problem

for which new results are found in the paper [13], which we aim to replicate here. Then,

we introduce the neural network formalism, and end with a short description of natural

cubic splines, a class of functions that are useful for describing the inductive bias of some

neural networks.

2.1 Univariate regression

Given a set of inputs xj ∈ X and labels yj ∈ Y , univariate regression refers to the task of

determining a function f : R → R, with the property that f(x) ≈ y,∀x ∈ X , y ∈ Y . We

will refer to the set of input-label pairs {xj, yj}Mj=1 as the dataset D. We denote by |D|
the size of the dataset.

In practice, the dataset is split into the training set Dtrain and the test set Dtest. The train-

ing dataset contains the data a model is fit to, whereas the test set contains data on which

its performance is evaluated. It’s also common to hold out an additional subset called the

validation set for the purposes of tuning a model’s hyperparameters. Hyperparameters

are numbers that control particular aspects of the training process which themselves do

not get updated during training.

A special case of this is linear regression, where f is restricted to being a linear function,

and the task is finding two constants u, v ∈ R such that f(xj) = uxj + v ≈ yj,∀x ∈
X , yj ∈ Y . However, if the data follows a non-linear trend, there is a limit to how well a

linear estimator can do. Fortunately, there are plenty of alternatives.

10

Figure 2.1: Neural network architecture with one input, one output, and a single hidden
layer containing n hidden units with activations zj. The first set of arrows corresponds to

the weights in layer 1: w
(1)
j . The biases b

(1)
j by convention are characteristic of each unit

in the hidden layer, so they are inside the unit. The second set of arrows corresponds to
the weights in layer 2, w

(2)
j , and the final bias b(2) is in the output unit.

2.2 Neural networks

Going beyond linear regression, one way to determine the function f is to parameterise

it with a set of parameters θ and choose these parameters such that the function fits our

data. In a sense, this is what neural networks do: they approximate a function whose

closed form is unknown. Loosely following [14], the feed-forward neural network is a

collection of such parameters θ, split into a set of weights and biases which implement

the relationship:

a
(1)
j = w

(1)
j x + b

(1)
j , (2.1)

which is called a pre-activation. This linear combination of weight, input and bias is then

transformed using a nonlinear activation function ϕ:

z
(1)
j = ϕ(a

(1)
j), (2.2)

which yields the output (or activation) of a hidden unit j. Overall, a network with one

hidden layer implements the following:

f(x,θ) =
m∑
j=1

w
(2)
j ϕ(w

(1)
j x + b

(1)
j) + b(2), (2.3)

with θ = vec(w
(1)
1 , . . . , w

(1)
m , b

(1)
1 , . . . , b

(1)
m , w

(2)
1 , . . . , w

(2)
m , b(2)).

In practice, networks tend to be have more than one hidden layer, often stacking dozens

of layers of different widths (a layer’s width is its number of units). One of the most

successful networks in recent years, the transformer [15], stacks many “blocks”, each of

11

which contains several deep feed-forward neural networks. Any network with hidden

layers is considered “deep”, however in practice this usually refers to two or more hidden

layers.

A network’s parameters are initialised randomly according to some scheme, such as Glorot

initialisation [16]. Fitting the network to the data essentially entails updating its param-

eters via an optimisation process, usually gradient descent, to optimise some measure of

the error of the network’s predictions on the training dataset.

In the regression case, it’s common for the loss function to be mean squared error, defined

as:

L(θ) =
1

n

n∑
i=1

ℓ(ŷ, y),

ℓ(ŷ, y) = (ŷ − y)2
(2.4)

where yi is the ground truth and ŷi is the network’s prediction for xi, i.e. f(xi,θ). Given a

loss function and a set of parameters, at each optimisation step, gradient descent updates

the parameters as:

θt+1 = θt − η∇θtL(θt) (2.5)

where η is the learning rate (or the step size). η is a hyperparameter: a number whose

value is not updated by the optimisation process itself, and whose selection is down to

modeller’s choice. The learning rate has the effect of controlling how large each parameter

update is; too large a step means that the update may overshoot a good value for θ, but

too small a step and the optimisation takes very long to converge or find a bad solution.

Throughout optimisation, the iterates θt achieve better values for the loss function, such

that after some time the optimisation process converges to a solution with minimal loss.

For modern neural networks it isn’t uncommon for training loss at convergence to be

≈ 0, i.e. the network perfectly fits the data, but this isn’t necessarily the case. A more

in-depth discussion of the effect of overparameterisation happens in Chapter 3.

2.3 Natural cubic splines

Following the formalism in [17], let’s first define a set of points ∆ in an interval [a, b]:

∆ : a = x1 < x2 < · · · < xn = b (2.6)

We also have the respective values of y: Y = {y1, y2, . . . , yn} for the points in ∆.

12

A function S∆(x) ∈ C2(a, b) is represented by piecewise polynomials:

S∆(x) =

C1(x) x1 ≤ x ≤ x2

C2(x) x2 < x ≤ x3

. . .

Cn(x) xn−1 < x ≤ xn

, (2.7)

where each piece is a cubic polynomial of the form: Ci(x) = aix
3 + bix

2 + cix + di. We

say that S∆ is a cubic spline on the set ∆ if for all the points in the set, S(xi) = yi and

the following conditions hold for each pair of polynomials in S∆ [18]:

C ′
i−1(xi) = C ′

i(xi), i = 2, . . . , n

C ′′
i−1(xi) = C ′′

i (xi), i = 2, . . . , n
(2.8)

The conditions that each polynomial must pass through exactly two points, together with

the conditions regarding first and second derivatives, yield a system of 4n − 2 equations

that need to be solved in order to recover the coefficients ai, bi, ci, di. But with 4n coef-

ficients in total, two additional equations are required, called the boundary conditions.

There are multiple types of boundary conditions, yielding different functions. One of

these functions is the natural cubic spline, for which the following statements are true:

C ′′
1 (x1) = 0

C ′′
n(xn) = 0.

(2.9)

Having been acquainted with these three key concepts, we move onto a survey of the

research literature most relevant to the characterisation of implicit bias in [13].

13

Chapter 3

The mystery of generalisation

In the introduction, we briefly mentioned that there is a mystery regarding the general-

isation capability of deep neural networks. In this chapter, we first present why such a

mystery exists in the first place. Several approaches are covered which aim to elucidate

the question of generalisation, some of which arrive at similar answers through different

perspectives.

3.1 Learnability and generalisation

All neural networks carry out the same algorithmic blueprint: empirical risk minimisation

(ERM). Under ERM, a generic learning algorithm A searches over a set of predictors, H,

called a hypothesis class, to find a predictor or hypothesis h ∈ H which minimises the

training error on a dataset comprising inputs and their labels drawn from a distribution

D (see e.g. [19]). The term training error is interchangeable with empirical risk.

The hypothesis class H is selected before seeing the data, effectively restricting the search

space. There is a good reason for doing this: one of the main results of statistical learning

theory is the “no free lunch” theorem, which states that there does not exist a universal

learner; no predictor has the minimum risk achievable across all distributions. Choosing

a suitable hypothesis class is also a way of incorporating prior beliefs regarding which

predictors should do well on a given task.

The error of an ERM predictor can be decomposed into two terms: the approximation

error (or bias) and the estimation error (or variance). The former is equal to the lowest

error achieved by a hypothesis in H; the latter is the difference between the approximation

error and the actual error achieved by the predictor.

From this decomposition, a relation arises between the size of the hypothesis class H
and the error of an ERM predictor. Choosing large H yields low-bias, but high-variance

predictors, which in practice “overfit” the data: they achieve good training error, but

do poorly on test data. On the other hand, restricting H to be small yields high-bias,

14

low-variance predictors; these “underfit” the data, in the sense that they achieve worse

training error, but they may generalise better.

To achieve the best possible performance, a learning algorithm needs to find the optimal

trade-off between two error terms. This phenomenon is called the bias-variance trade-off,

and it is the source of tension between statistical learning theory and modern deep neural

networks. Overparameterised networks, that is, networks with many more parameters

than data points in the training set, have very large hypothesis classes, which the theory

predicts should lead to predictors which overfit and generalise poorly. And yet, deep

networks generalise well. Why?

There is no consensus answer to this question. However, there are many proposed expla-

nations, many of which have sound theoretical justifications and some empirical backing.

In the rest of this chapter, we survey the literature on generalisation, a broad field that

resists easy classification. Here, we cover the approaches that seem most promising, and

which are closest in reasoning to our main inspiration, the paper by Jin and Montúfar

[13].

3.2 Implicit bias of the optimisation process

One of the leading explanations for why overparameterised networks work so well is that

the optimisation algorithm is biased toward simpler solutions, which generalise well. That

is, despite these networks having a very large hypothesis class, simpler solutions are more

likely to be found than complex ones. In this section, we focus on characterisations of the

bias of gradient descent due to its ubiquity in neural network training, but similar results

exist for other optimisers [20].

If such a bias existed, it would be useful to understand by which mechanism it selects

simpler hypotheses. For gradient descent, it seems like this mechanism is an implicit

regularisation of the ℓ2 norm of the network parameters. One of the earliest observations

in this direction comes from Neyshabur et al. [21], a primarily empirical examination.

Here, the authors train networks resembling Fig. 2.1 with increasing number of hidden

units n on an image classification task. They show that for networks which are large

relative to the number data points they are trained on, test loss does not increase with

size. In fact, the opposite happens: networks generalise better. This outcome is robust

to different experiments they tried, including training on partially randomised labels to

force overfitting.

Although they do not hone in on the precise character of the regularisation, [21] demon-

strate that something other than the size is controlling the capacity, i.e. the size of the

hypothesis class H, of the network, and that it may be related to the norm of the weights.

A similar empirical observation is made in [20], who find that gradient descent minimising

15

Figure 3.1: Reproduced from [22], who prove that the solution found by gradient descent
always lies in the green ring. The red region is excluded by Theorem 2.4 in [22]. The disc
is centred on the initial parameters θ0. The expressions for Rα, Rβ are given in equations
3.2; they depend on scalars α, β which are lower and upper bounds, respectively, for the
minimum singular value of the Jacobian matrix J (θ).

mean squared error converges to the solution f(·, θ∗) that fits the data and whose set of

parameters is closest to initialisation:

θ∗ = argminθ ∥θ − θ0∥2, (3.1)

with f(X , θ∗) = Y .

A rigorous proof for the finding that gradient descent implicitly regularises the ℓ2 comes

from Oymak and Soltanolkotabi [22]. Here, the authors are able to set a lower and upper

bound for the neighbourhood in which gradient descent searches for solutions. Specifically,

gradient descent is guaranteed to converge to a solution θ∗ in the neighbourhood of radius
4
α
∥f(θ0)−y∥2 around the initial point θ0. They additionally obtain a result (see Theorem

2.4 in [22]) that shows that iterates cannot lie in a ball of radius Rα of θ0, so solutions

are always on the “ring” surrounding the initial point (see Figure 3.1 for a visualisation).

The radii of the discs are:

Rα =
∥f(θ0) − y∥2

α
, Rβ =

∥f(θ0) − y∥2
β

, (3.2)

where α, β are lower and upper bounds for the smallest and largest singular values of the

Jacobian matrix:

J (θ) ∈ Rm×n,Jij =
∂f(xi,θ)

∂θj

. (3.3)

This set of results raises an interesting observation: if it is indeed the magnitude of the

16

weights and not their number which controls the capacity of the network, then overpa-

rameterised networks should generalise, so long as they have small weight norms. In

effect, this means that networks could have an infinite number of hidden units and still

generalise well.

This line of argument is echoed in [23], who consider infinitely wide ReLU networks in

the univariate regression case. They find that as long as the total ℓ2 norm of the weights

of these networks is bounded, the hypotheses the trained networks represent are a class

of functions called linear splines. Linear splines are a special case of the cubic spline

definition presented in 2.7 with the cubic and quadratic terms equal to 0.

3.3 Approximation theory

Taking a step back, this is an example of a series of results that finds equivalences between

deep networks and spline interpolation – learning from data using spline functions. It is a

statement about the sorts of functions neural networks can and do represent in practice.

But while this type of precise characterisation is recent, results in this area of research

date back several decades under the umbrella of approximation theory.

One of the most famous results in approximation theory comes from Kurt Hornik [24],

who finds that multi-layer feedforward networks are universal approximators. That is,

they can approximate any continuous function arbitrarily well, provided that there are

enough hidden layers. If anything, this result makes even more pressing the need to

pinpoint a mechanism through which networks find simple, low-complexity functions.

Since then, we’ve found more precise characterisations of the inductive bias of neural

networks, again in the form of splines. For example, [25] find that deep ReLU networks

are solutions to a variational problem over functions in a particular function space. Closer

to our main focus, [26] find that depending on parameter initialisation shallow ReLU

networks represent cubic splines or adaptive linear splines, “where neurons accumulate at

the discontinuities and yield piecewise linear approximations” [26].

3.4 Learning regimes and the neural tangent kernel

The scale of parameter initialisation in [26] controls whether a network operates in the

so-called “kernel” (or “lazy learning”) or “adaptive” regimes. Scale here refers to a simple

hyperparameter α used to scale the initial parameters such that w0 = αω0, where ω0 is

a vector of weights initialised according to some known scheme. Networks in the two

regimes have different inductive biases, and they yield different solutions after training

[27]. This brings us to another perspective on why and how neural networks generalise,

that of learning regimes.

The seminal paper from Jacot et al. [28] introduces a connection between the training

17

dynamics of feedforward neural networks and kernel gradient with regards to the neural

tangent kernel (NTK), relying on an analysis in the infinite-width limit. For finite net-

works, the NTK is random at initialisation and varies during training, but if we make the

assumption that n → ∞, the kernel is stable during training and converges to a known

limiting kernel. The authors go on to relate the positive-definiteness of the limiting kernel

to convergence properties of the network.

Building on this work, Lee et al. [29] show that for sufficiently wide hidden layers, a

network’s training dynamics are similar to those of an equivalent linearised model. This

finding is key to the derivation of the variational problem in [13] – the paper whose results

we replicate in Section 5 –, so it is worth spending some time explaining the arguments.

The authors start with a fully-connected neural network with L hidden layers and a final

readout layer L + 1, with the network’s units implementing the relation:{
hl+1 = xlW l+1 + bl+1

xl+1 = ϕ(hl+1)
(3.4)

where the weights and biases are defined as:{
W l

ij = σω√
nl
ωl
ij

blj = σbβ
l
j

(3.5)

Equations 3.4 and 3.5 define a non-standard parameterisation referred to as the neural

tangent kernel (NTK) parameterisation, where the trainable parameters ωl
ij, β

l
j are drawn

from a unit Gaussian distribution: ωl
ij, β

l
j ∼ N (0, 1). To simplify the notation, let’s take

θl ≡ vec({W l, bl}) as each layer’s parameters and θ to mean all the network’s parameters.

Additionally, let ft(x) ≡ hL+1(x) denote the output of the network at time t.

Given the standard supervised learning task on a dataset D =
{

(x, y)|x ∈ X , y ∈ Y
}

by minimising empirical loss L, the parameters θ and outputs ft evolve during time via

continuous gradient descent as:

θ̇t = −η∇θft(X)T∇ft(X)L

ḟt(X) = ∇θft(X)θ̇t = −ηΘ̂t(X ,X)∇ft(X)L
(3.6)

where η is the learning rate, ft(X) = vec([ft(x)]x∈X) and Θ̂t ≡ Θ̂t(X ,X) is the neural

tangent kernel at time t:

Θ̂t = ∇θft(X)∇θft(X)T =
L+1∑
l=1

∇θlft(X)∇θlft(X)T (3.7)

The first important result in [29] regards the training dynamics of linearised networks.

Let’s define a linearised network as the first order Taylor expansion of a standard neural

18

network using NTK parameterisation around its initial parameters θ0:

f lin
t = f0(x) + ∇θf0(x)|θ=θ0 ωt, (3.8)

where ωt = θt − θ0. Plugging f lin
t into the ordinary differential equations in 3.6 and

choosing mean squared error as our loss we get closed form solutions for the parameters

and predictions of the linearised model over time, which depend only on the predictions

at initialisation f0 and the tangent kernel Θ̂0 (see [29] for the derivation). Having a closed

form solution for the training dynamics of these networks means that the values of their

parameters and predictions over time are obtainable without carrying out an optimisation

process, i.e. without running gradient descent.

Then, the authors go on to show that when training a wide network with a learning rate

η less than a threshold ηc which depends on the NTK, as the width n of a network tends

to infinity, we have:

sup
t≥0

∥ft(x) − f
lin(x)
t ∥2 = O(n− 1

2)

sup
t≥0

∥θt − θ0∥2√
n

= O(n− 1
2).

(3.9)

This result says that for sufficiently large n, the difference between a network’s output

and the output of a linearised network is bounded by 1√
n
. As n tends to infinity, this

bound becomes tighter and tighter, and the two functions overlap, which means that the

infinite-width network is equivalent to a linearised network. Moreover, a similar statement

applies to the parameters θt: the wider the network, the smaller the difference between

θt and the initial parameters θ0.

To summarise, combining the two results we get the insight that infinitely wide networks

behave as linearised networks, whose training dynamics are known in closed form. This

is a succinct characterisation of not just the bias of these networks, but of their entire

behaviour during optimisation.

While this is a fascinating result in itself, it is not one that applies to deep networks

in use today. Indeed, [27] recognise that overparameterised networks more often lie in

the adaptive regime, which “leads to very different and rich inductive biases, e.g. induc-

ing sparsity or low-rank structure, that allow for generalization in settings where kernel

methods would not”. What else could explain why these deep networks generalise?

3.5 Loss landscapes

The loss landscape view of generalisation is quite different to the approaches outlined

above. It postulates that generalisation occurs due to some characteristics of the loss

function, unrelated to the particularities of the optimiser, or to regularisation. Wu et al.

[30] frame the problem using two questions:

19

(a) What differentiates good minima (those with good generalisation capability) from

bad minima?

(b) Among all the minima that are possible for an overparameterised neural network,

why are trained networks finding the good minima?

The answer to the latter question, [30] say, lies in the fact that in the loss landscape, good

minima are surrounded by basins of attraction with large volume relative to the basins

around bad minima. The term basin of attraction refers to a region in parameter space

such that any parameter θ lying in that region will eventually converge to an attractor

A (which is some parameter value). The authors find empirically that with different

initialisation schemes they still achieve good performance, and conjecture that this is

because parameters are more or less always initialised in a good basin of attraction.

They justify this claim analytically for 2-layer networks and through numerical experi-

ments for deeper networks. They find that training with an adversarial objective, i.e. one

designed to force the network to overfit, yields models which generalise poorly. However,

while the paper offers a new explanation for generalisation which seems to be supported

experimentally, it doesn’t seem to definitively exclude other explanations for why good

solutions are found among bad ones. For example, one claim is that stochastic gradient

descent cannot be the answer to the “mystery of generalisation” because plain gradient

descent also does relatively well. This rules out stochasticity as the answer, but it does

not rule out the implicit bias of gradient descent as an explanation.

Additionally, it is unclear if the empirical findings which justify that all initialisations end

up in the basins of good minima hold for other experimental setups. For example, [31]

find that it is possible to initialise a network such that SGD finds solutions which do not

generalise well, and that these are also in the vicinity of the initial parameters θ0, in the

same region as good solutions.

Another explanation for generalisation that is related to the loss landscape is that networks

generalise because they find flat minima. Intuitively, a sharp minimum is one that lies in

a “ravine” – a point of low loss that is surrounded by points with much higher loss relative

to it. Conversely, a flat minimum is one that is surrounded by points with more or less

similar loss. There have been several proposed measures of sharpness, some based on the

worst-case increase in loss around a point [32], others around the expected increase in loss

induced by a random perturbation in parameter space (as in the PAC-Bayes framework,

see e.g. [33]).

In [34], the authors carry out an extensive survey of the correlation between different mea-

sures of the complexity of the hypothesis class and generalisation capability (formalised as

low generalisation error). This large-scale experimental set-up covers 40 different complex-

ity measures, training convolutional networks with variations along 7 hyperparameters:

batch size, dropout probability, learning rate η, network depth, weight decay coefficient

20

λ, number of hidden units n and optimiser.

They find that sharpness-based measures are the measures best correlated with small

generalisation error, with different sharpness measures exhibiting variation in their corre-

lation across hyperparameter values. Another surprising finding is the strong correlation

between optimisation-based measures and generalisation, especially the speed of conver-

gence and gradient noise (variance of the gradients) toward the end of training.

Although it is one of the largest experiments to date on theory of generalisation, the

authors acknowledge the limitations of such a study. First, that the empirical correlation

of a complexity measure with good generalisation does not imply that the measure causes

good generalisation. They mitigate this shortcoming through the scale and coverage of

the experiments, but ultimately there remain some gaps due to computational constraints.

They conclude that further experimentation is needed, covering more of the hyperparam-

eter types used in practice, as well as larger architectures that better resemble systems in

use today.

One way to exploit sharpness measures to get better generalisation is to deliberately

search for flat minima. Two recent approaches with appealing theoretical justifications

and seemingly strong empirical backing are sharpness-aware minimisation (SAM) [35]

and stochastic weight averaging (SWA) [36]. While their exact mechanisms are out of

the scope of this write-up, it is worth stating that the results of using these optimisers as

drop-in replacements for plain SGD seem to be positive. For example, as of the time of

this writing, SAM holds the state of the art accuracy of 96.08% on the CIFAR-100 image

classification task [37].

An important criticism of the sharpness perspective on generalisation is that it is possible

for sharp minima to generalise well. In [38], show that it is possible to reparameterise

deep ReLU networks such that they exhibit sharp minima where they previously had

flat minima, without changing their generalisation capability. This does not invalidate

the empirical support for methods that seek out flat minima, but it does challenge the

correctness of measures of sharpness in the literature.

3.6 Double descent and grokking

Aside from their surprising capability to generalise, deep neural networks exhibit some

perplexing behaviours during training. One fruitful avenue of research concerns two such

phenomena: double descent and late generalisation phenomena. Double descent was

introduced in [39], and refers to the “double-dip” shape of the test error curve of over-

parameterised networks (see Figure 3.2). To reiterate, by overparameterised we mean

networks whose number of parameters is larger than the number of inputs in the training

dataset: |θ| > |Dtrain; conversely, underparameterisation is |θ| < |Dtrain|. The size of the

network where the relationship |θ| = |Dtrain| holds is called the interpolation threshold.

21

Figure 3.2: Reproduced from [39]. The x-axis is the capacity of H, which the paper
measures using the number of parameters of the network. (Left) the classic U-shaped
figure for empirical risk (equivalent to the loss function of the network) exhibiting the bias-
variance trade-off for under-parameterised models. Given a “sweet spot” for the number
of parameters, smaller networks underfit the training data, showing higher training loss,
while larger networks overfit it and achieve higher loss at test time despite lower training
loss. (Right) networks larger than the interpolation threshold enter the interpolating
regime, with test loss decreasing further despite training loss being approximately zero.

The double descent curve reconciles the apparent contradiction between the predictions

of statistical learning theory (SLT) and the empirical success of overparameterised neural

networks by claiming that they operate in different regimes. To reiterate, under SLT,

neural networks are subject to a bias-variance trade-off, where the following statements

are simultaneously true: (1) fitting the training data arbitrarily well does not lead to better

performance on test data; (2) underfitting the training data leads to poor performance

on both datasets. This leads to the U-shaped curve in 3.2. For networks which operate

in this regime, the aim is to find the “sweet spot”, the very bottom of the curve where

the trade-off between training and test error is optimal.

With larger datasets and more efficient computation becoming available, neural network

sizes have increased by several orders of magnitude, entering the so-called interpolation

regime. At the interpolation threshold, a neural network trained to convergence memorises

the data points and generalises poorly; this explains the peak on the right-hand side of

the U-curve. Networks larger than this generalise better, and the test loss reaches new

minima that are lower than the minimum in the initial dip of the U-curve.

A later paper, [40], finds that the same double-dip shape also applies epoch-wise: as a

model is trained, at first its training and test losses decrease in tandem. Then, after some

time, the training loss continues to decrease – eventually reaching 0 – as the test loss

increases. Finally, the test loss decreases again while the training loss remains constant

at 0.

A related phenomenon is termed “grokking” or late generalisation by [41]. Here, a series

of experiments on a small algorithmic dataset outlines a surprising behaviour of neural

networks during training. After some amount of optimisation steps, the training error

decreases to ≈ 0; at the same time, the test error remains high, with the network only

22

Figure 3.3: Reproduced from [42]. A systematic train-test split where the black dots are
training data and the red dots are test data. In the extrapolation example, the test data
comprises images displaying hearts that are larger than those in the training set.

doing as good as a random guess on the test set. Many more optimisation steps later,

with the training error still at 0, the test error gradually decreases to ≈ 0. In some of

the experiments, the difference between when a network converges to ≈ 0 training loss

and when it achieves ≈ 0 test loss is striking: on the order of 103 additional optimisation

steps are needed.

3.7 Out-of-distribution generalisation

So far, we’ve examined attempts to explain why networks generalise so well. But in prac-

tice, there are known limitations to networks’ ability to generalise. Specifically, networks

do very poorly when the test data is unlike the training data in some systematic way.

Consider the training data points {(xj, yj)}Mj=1 drawn independently and identically dis-

tributed from an underlying distribution Ptrain(X, Y). The term distributional shift refers

to the situation where the test dataset is drawn from a different distribution Ptest(X, Y)

that is in some systematic way unlike Ptrain.

In this setting neural networks generalise very poorly because they learn statistical cor-

relations from the data that may not be robust across different environments. Ideally,

we would like these models to have a mechanistic understanding of the world, i.e. one

that is grounded in the mechanisms that give rise to observed data. If models had such

an understanding, they would do well on unseen data because this data is essentially

recombining known factors.

One way to create such a model is to work back from observed data to a set of underlying

factors of variation (FOVs) that generate this data. This is the problem setting of [42],

a large scale study of different learning approaches on what is sometimes referred to as

the disentanglement task (because the aim is to disentangle the FOVs in order to learn

them). In [42], the inputs are images generated by a combination of factors of variation,

i.e. x = g(y) where y is a vector of factors of variation and g is an injective function.

The task is then to recover f(x) = g−1(x) = y.

The experiments in the paper follow a systematic split of the data into training and test

data along the FOVs that compose an image. These splits are interpolation, extrapolation

23

and composition. For interpolation, given a factor of variation representing the size of a

heart shape in an image, the training set might contain small hearts and large hearts, and

the test set medium-sized hearts. For extrapolation, images of small and medium-sized

hearts are trained on, and images of large hearts are to be predicted.

Composition refers to a combination of two factors of variation such that two particular

values for the factors are present, but they do not co-occur. For example, given size and

position in the image, the training set might contain small hearts in the bottom-left corner,

small and large hearts in the top-right corner, but never large hearts in the bottom-left

corner. What these splits aim to highlight is whether the predictor has learned the FOVs

that generate the data. If it has done so, then it will use these FOVs to interpolate,

extrapolate and compose data points that it has not seen before, thus generalising well.

The benchmark results are not encouraging: all the approaches that were tested had

difficulties learning the FOVs, and when presented with FOV values that were outside the

training distribution they predicted values that they had seen before, essentially reverting

to the mean. None of the 2000 models they trained successfully inverted the generative

mechanism g(y) = x.

Another concrete example of distributional shift comes from Koch et al. [43], who study

the problem of objective robustness in the reinforcement learning (RL) context. The term

objective robustness is used to refer to an agent that is otherwise capable, but is pursuing

an objective other than the one it was rewarded for during training. This is distinct from

capabilities robustness in that an agent can have robust capabilities while pursuing the

wrong goal.

The paper is structured around multiple experiments with reinforcement learning agents

in different settings. One of the settings, CoinRun, is a platformer game where the RL

agent controls a player whose goal is to collect a coin while avoiding obstacles and enemies.

During training, the coin is always at the end of the level, i.e. at the right-most part of

the map. If during test time the coin is instead placed randomly throughout the map, the

agent ignores it and goes to the end of the level anyway. Notably, this is not a capability

robustness failure; the agent still knows to manage obstacles and enemies, and does so

successfully.

In the training set, the features “coin” and “end of level” always co-occurred, and were

rewarded together. When they no longer overlapped at test time, it became obvious that

what the agent had learned was not to find the coin, but to go to the end of the level.

Another example of the same phenomenon comes in the form of a procedurally generated

maze, where the player must navigate to a piece of cheese. During training, the piece of

cheese is always in the top-right corner of the maze. At test time, the cheese is placed

randomly in the maze. The agent reliably navigates to the top-right of the maze.

In both cases, the model is learning spurious correlations from the training environment

24

and loses reward because those do not hold in the test environment. One way to mitigate

this is to learn invariant predictors [44]. Given environments belonging to a perturbation

set, e ∈ F , we first introduce the concept of an equipredictive representation: a func-

tion Φ(x), x ∈ X with the property that for all environments in the perturbation set,

Pe(Y |Φ(X)) is the same. If some relationship between X and Y can be written in terms

of an equipredictive representation Φ, then this relationship is invariant across environ-

ments, and models that learn this relationship are called invariant predictors. Because

invariant predictors learn relationships that are robust across environments, they capture

fewer of the spurious correlations that might result in poor generalisation.

Distributional shift has been identified as one of the key open problems for the safety

of future AI systems. In [45], the authors note that the problem isn’t just that systems

make mistakes: it’s also that they are overconfident in their predictions. In situations

where their outputs are uncertain, we would like AI systems to be more conservative and

to ask for human input. This is not always an option, especially for systems that work

in time-sensitive domains. Systems that are overconfident and suffer from distributional

shift are also prone to runaway effects where one mistake brings the system into a state

it has not encountered during training, leading to even worse decisions, and so on.

3.8 Summary

This chapter has introduced the idea that neural networks generalise despite statistical

learning theory predicting that they ought to have difficulty. We’ve covered a few of the

interesting threads of research into generalisation, some with very different perspectives

on a potential mechanism. We’ve also explored one of the limitations of today’s networks

and its implications for future machine learning systems.

What is missing is a unified theory for these seemingly disparate explanations. What is the

“recipe” of generalisation? Whatever the solution is, it is clear that further experiments

are needed to ascertain the merits of each explanation. In the rest of this paper, we aim to

evaluate the robustness of a set of results at the intersection of approximation theory and

the implicit bias of gradient descent, presented in [13]. In the next chapter, we present

the results themselves, and in Chapter 5 we outline the outcomes of our experiments.

25

Chapter 4

Gradient descent is biased toward

smooth functions

The main aim of this paper is to study and evaluate the results for univariate regression

described in [13]. These results refer to the implicit bias of gradient descent when optimis-

ing mean squared loss on shallow wide networks on 1-dimensional numerical data. In this

section, we introduce the problem formalism following the original paper, summarise their

findings, and present the experimental set-up that was used to replicate these results.

4.1 Problem set-up

To start, consider in the general case a fully-connected neural network with one hidden

layer of width n, d inputs and a single output. This is parameterised as:

f(x, θ) =
n∑

i=1

W
(2)
i ϕ(W

(1)
i x + b

(1)
i) + b(2), (4.1)

with ϕ being an activation function and W(1) = (W
(1)
1 , . . . ,W

(1)
n)T ∈ Rn×d, where

W
(1)
i = (W

(1)
i,1 , . . . ,W

(1)
i,d) ∈ Rd, W(2) = (W

(2)
1 , . . . ,W

(2)
n)T ∈ Rn,b(1) = (b

(1)
1 , . . . , b

(1)
n)T ∈

Rn, b(2) ∈ R are the weights and biases of the hidden and output layers. We use

θ = vec(W(1),b(1),W(2), b(2)) to denote all the parameters of the network.

Let (W ,B) be a joint sub-Gaussian distribution: a distribution whose tails decay at least

as fast as those of a Gaussian distribution. Then, the network’s parameters are initialised

as follows:
(W

(1)
i , b

(1)
i) = (W ,B)

W
(2)
i =

√
1/n W(2), b(2) =

√
1/n B(2)

(4.2)

Additionally, let the activation function be the rectified linear unit: ϕ(x) = ReLU(x) =

max(0, x).

26

The regression problem is defined on data {(xj, yj)}Mj=1 where X = {xj}Mj=1 are the inputs

and Y = {yj}Mj=1 are the targets. The loss function is the empirical risk

L(θ) =
1

M

M∑
j=1

ℓ(f(xj, θ), yj), (4.3)

where ℓ(f(x, θ), y) = 1
2
∥y − f(x, θ)∥22, making L the mean squared error.

L(θ) is minimised using full-batch gradient descent with a fixed learning rate η. Each

optimisation step carries out the following update:

θt+1 = θt − η∇L(θ) = θt − η∇θf(X , θt)
T∇f(X ,θt)L, (4.4)

where f(X , θt) = [f(x1, θt) . . . , f(xM , θt)]
T is a vector containing network outputs for all

training inputs, and ∇f(X ,θt)L is the gradient of the loss function with respect to the

network outputs.

4.2 Results for univariate regression

The main result for univariate regression refers to a characterisation of the bias of gradient

descent toward smooth functions.

Theorem 1. Assume a network with a single input, one hidden layer of n rectified

linear units and a single output, using the parameterisation in 4.1 and the initialisa-

tion scheme in 4.2. Then, for any dataset {(xj, yj)}Mj=1 and support set S = supp(ζ) ∩
[minj, xj,maxj xj], after minimising the mean squared error using full-batch gradient de-

scent, we have supx∈S ∥f(x, θ∗) − g∗(x)∥2 = O(1√
n
), where the function g∗ is the solution

to a variational problem defined as:

min
g∈C2(S)

∫
S

1

ζ(x)
(g′′(x) − f ′′(x, θ0))

2dx

subject to g(xj) = yj − uxj − v, j = 1, . . . ,M.

(4.5)

where ρ(x) = 1
ζ(x)

is a curvature penalty function, with ζ(x) =
∫
R |W |3pW,B(W,−Wx)dW .

To summarise this result, the error between the trained neural network and the solution

to the variational problem is bounded, and this bound becomes tighter as the network is

scaled up, following the relation 1√
n
. Thus, for wide enough networks, the error is ≈ 0,

and the network approximates the function g∗.

There are several assumptions on which this result rests, and which are explored in more

depth as part of the experiments:

� The data is linearly adjusted. That is, given the dataset {(xj, yj)}Mj=1, the input

to the neural network is {(xj, yj − uxj − v)}Mj=1, where u, v ∈ R are constants.

27

This detail is motivated by the invariance of the second derivative to addition of

linear terms. Intuitively, it removes the component of the data that could easily be

interpolated by a linear model.

� Given sufficiently many hidden units n and sufficiently small η, the optimisation

process achieves zero training error on the data.

One special case concerns parameter initialisations for which the curvature penalty func-

tion 1/ζ(x) is constant. For independent random variables W ,B, W ∼ Unif(−aw, aw)

and B ∼ Unif(−ab, ab) with ab
aw

≥ I, the curvature penalty 1/ζ is constant on [−I, I].

When the curvature penalty is constant, the variational problem in 4.5 is solved by the

natural cubic spline function. We focus the experiments in the current paper on this spe-

cial case, and recommend that further work investigates other non-closed form solutions

to the variational problem.

It is also worth mentioning that for normal initialisation, the curvature penalty is not

constant, but has a closed form that depends on the data and the parameter initalisation:

ζ(x) =
2σ3

wσ
3
b

π (σ2
b + x2σ2

w)
2 , (4.6)

where W ∼ N (0, σ2
w),B ∼ N (0, σ2

b).

The main result is generalised to activation functions other than ReLU provided they have

particular characteristics. Specifically, the activation function ϕ should be k-homogenous:

ϕ(ax) = akϕ(x),∀a > 0, as well as satisfy Lϕ = δ, where L is a linear operator and δ is

the Dirac delta function. Then, there exists a function p such that Lp ≡ 0 which we can

use to adjust the data {(xj, yj − p(xj))}Mj=1. The function g∗ now solves:

min
g∈C2(S)

∫
S

1

ζ(x)
[L(g(x) − f(x, θ0))]

2dx

subject to g(xj) = yj − p(xj), j = 1, . . . ,M.

(4.7)

with ζ(x) = pC(x)E(W2k|C = x). To recover the original variational problem, we observe

that for ϕ(x) = ReLU(x), the linear operator L is the second derivative, i.e. Lϕ = d2ϕ
dx2

with Lϕ = δ.

An interesting corollary of the main result is that any curvature penalty function ρ = 1/ζ

can be constructed by controlling the distribution from which parameters are initialised.

This could have useful practical implications, because it would enable networks to be

designed with a particular inductive bias.

Finally, although we do not focus on multivariate regression in this paper, it is worth

mentioning that [13] present an analogous result for the multivariate setting, where the x

is a d-dimensional vector. Here, the implicit bias of gradient descent is also toward a class

of low-complexity functions, but this measure of complexity is no longer the curvature, and

28

does not have a straightforward interpretation. Similarly to the natural cubic spline case,

for parameter initialisations that yield constant curvature penalties, networks converge to

a type of function called a polyharmonic spline (see Theorem 8 in [13]).

4.3 Experimental set-up

Our experiments are designed to test the robustness of the results described in the previous

section regarding the bias of gradient descent toward approximating natural cubic spline

functions. A first set of experiments follows the set-up in [13] in order to replicate the

results. Then, additional experiments examine whether the results hold under various

changes to network architecture and hyperparameter choice. In this section, we present

the details of which experiments were carried out, and what outcomes are predicted for

these experiments according to Theorem 1 and its corollaries. We present our findings in

Chapter 5.

4.3.1 Data

The characterisation in Theorem 1 does not depend on the type of dataset. In these

experiments, 7 datasets are used, all corresponding to an elementary function. To repli-

cate the conditions in the original paper, only 10 data points are used per training set.

Experiments with more data are run as an ablation, and the findings are described in

the next section. Data is normalised such that the training set lies in the interval [−1, 1],

and the points themselves are selected such that they exhibit interesting behaviour. The

datasets are:

(a) Sine: h : [0, 2π] → [−1, 1], h(x) = sin(x)

(b) Parabola: h : [−5, 5] → [0, 25], h(x) = x2

(c) Piecewise polynomial : h : [−2, 2] → [− 2
3
√
3
, 6],

h(x) =

{
x2, x < 0

x3 − x, x ≥ 0

(d) Chebyshev polynomial : h(x) = 16x4 − 12x2 + 1. We study this function over

h : [−1, 1] → [−5
4
, 9] because of its interesting behaviour around the origin. The

function is symmetrical, creating a rounded “W” shape (Fig. 4.1d).

(e) Linear : h : [0, 9] → [3, 21], h(x) = 2x + 3

(f) Constant : h : [0, 9] → {1}, h(x) = 1

29

(a) h(x) = sin(x) (b) h(x) = x2

(c) h(x) is a piecewise polynomial. (d) h(x) = 16x4 − 12x2 + 1

(e) h(x) = 2x+ 3 (f) h(x) = 1

(g) h(x) is a piecewise function where the
pieces are constant functions.

Figure 4.1: Plots of the datasets used in the experiments. Each set X consists of 10
data points, however the range of the values differs such that they capture interesting
behaviours of the functions.

(g) Square: h : [0, 9] → {0, 1},

h(x) =

{
0, x ∈ [0, 3) ∪ [6, 9]

1, x ∈ [3, 6)

To replicate the findings in Theorem 1 empirically, we run a set of “baseline” experiments.

We also experiment with two generalisation tasks other than the baseline: interpolation

and extrapolation. For interpolation, we remove the middle third of the original training

set and use it as a test set. For example, we split the data set D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

into the training set Dtrain = {0, 1, 2, 3, 7, 8, 9} and the test set Dtest = {4, 5, 6}. For

extrapolation, we remove the final third of the training set, which would give us Dtrain =

{0, 1, 2, 3, 4, 5, 6} and Dtest = {7, 8, 9}.

30

Figure 4.2: Sine interpolation dataset example. Training data in blue, test data in red,
sin(x) ground truth. The training data here is the set S1 = {0, π

6
, π
3
, π
2
, 3π

2
, 5π

3
, 2π}. The

test set is S2 = {2π
3
, π, 4π

3
}.

4.3.2 Network architectures

The results in [13] apply to shallow networks – networks with only one hidden layer.

To simplify the presentation of the proofs, the authors carry out an anti-symmetric ini-

tialisation trick (ASI). ASI was first introduced in [46], who find that a component of

the generalisation error is due to the non-zero output of the hypothesis at initialisation,

f(x, θ0) ̸= 0. With ASI, the units in the hidden layer are duplicated, and the network

is initialised such that the hypothesis at initialisation is equal to 0 on the entire training

data: f(x, θ0) = 0,∀x ∈ X :

fASI(x,V0) =
n∑

i=1

√
2

2
V̄

(2)
i [⟨V̄(1)

i ,x⟩ + ā
(1)
i]+ +

n∑
i=1

−
√

2

2
V̄

(2)
i [⟨V̄(1)

i ,x⟩ + ā
(1)
i]+ ≡ 0, (4.8)

where V0 = vec(V̄
(1)
i , V̄

(1)
i , ā

(1)
i , ā

(1)
i ,

√
2
2
V̄

(2)
i ,−

√
2
2
V̄

(2)
i ,

√
2
2
ā
(2)
i ,−

√
2
2
ā
(2)
i) is the parameter

vector at initialisation.

Because the hypothesis is 0 at initialisation, the variational problem in 4.5 becomes:

min
h∈C2(S)

∫
S

1

ζ(x)
(h′′(x))2dx

subject to h(xj) = yj − uxj − v, j = 1, . . . ,M.

(4.9)

This means that the initial hypothesis no longer affects the bias of gradient descent, since

the solution to the above problem doesn’t depend on f(x, θ0).

31

4.3.3 Experiments

Replicating the baseline experiments

Experiments are clustered around replicating the original results (“baseline”), probing

their robustness (various ablations) and investigating the generalisation behaviour these

networks on interpolation and extrapolation tasks. The baseline experiments are run on

three main architectures: feedforward networks with one hidden layer, with and without

the ASI trick, and networks with two hidden layers. Their sizes range from 10 to 10,000

hidden units (although for some experiments we did try up to 1 million units). Each run

is repeated 3 times, and for the purposes of calculating the variational error the recorded

value is averaged and the standard deviation is recorded. In practice, the variational error

is calculated as:

Lvar(f, g
∗) = sup

x∈G
∥f(x, θ∗) − g∗(x)∥2. (4.10)

A validation error is also recorded, defined as the L2 norm of the difference between the

neural network and the ground truth:

Lval(f, h) = ∥f(x, θ∗) − h(x)∥2. (4.11)

Both errors are computed on an interval G = [min x,maxx], x ∈ X which includes the

data in the training set, but whose cardinality is equal or greater to X . This is because

we are interested in the behaviour of the network both on and off the training data.

Training is stopped when the following condition is true:

L(θt+1) − L(θt) ≤ 10−8 (4.12)

Additional experiments

To test the robustness of the results, we experiment across variations in some of the key

components in the optimisation process. Some of these are directly targeting assumptions

made by Theorem 1, such as having a sufficiently small step size and sufficiently many

hidden units; others are simply designed to evaluate the behaviour of networks under

perturbations in the experimental set-up.

Learning rate and learning rate schedules

We select the learning rate according to two different strategies, one of which is in keeping

with the paper [13], and the other which we have found to work well in practice.

In Appendix A of [13], the authors describe the process of finding the learning rate η as

follows: they start with a relatively large learning rate, and halve it until they reach a

value such that loss decreases during training. For example, we might start with η = 1

and try η ∈ {1, 0.5, 0.25, 0.125, . . . } until we find a value for which the loss decreases.

32

An alternative way to choose the learning rate is through a form hyperparameter opti-

misation – for example, grid search. Grid search involves trying out multiple values for

the parameter, usually on a logarithmic scale: η ∈ {1, 0.1, 0.001, 0.0001, . . . } and then

choosing the one that does best according to some metric. This is usually performed on

a validation set, however we use the training set directly.

Learning rate schedules are a way to modify the learning rate during training, usually such

that the value decreases from or oscillates around an initial value. We apply learning rate

decay, which reduces the learning rate by one half whenever the training loss plateaus.

A plateau is defined as a change in training loss of less than 10−4 over a span of 100

steps/epochs. In other experiments, we apply a cosine annealing schedule [47] whereby

the learning rate oscillates around an initial value over a pre-specified number of epochs

(we again use 100).

Model size and architecture

Model size is a key hyperparameter to evaluate, because the main result is connected to

the number of units in the hidden layer of the network. In [13], the number of hidden

units is n ∈ {10, 160, 640, 2560, 10240}, sometimes with other intermediate values in the

interval [10, 10240]. In the experiments, we try to evaluate the behaviour of much larger

networks, and go up to 106 hidden units. Here it is worth mentioning that for networks

that use the ASI trick, the number of parameters is |θ| = 6n, whereas for non-ASI it’s

|θ| = 3n. We typically use powers of 10 for the hidden units: n ∈ {10, 100, 1000, . . . },

though for most experiments we also 50, 500 etc.

We additionally train a deeper, 2-hidden layer network with n ∈ {10, 100, 150, 500} total

hidden units (i.e. not n units per hidden layer). Learning rates for these models differ

from the ones for the shallow networks (ASI and non-ASI), and we find them via learning

rate sweep as described above.

Optimiser

The optimiser in [13] is full-batch gradient descent. For the additional experiments, we

maintain the full-batch set-up and try Adam [48] with β1 = 0.9, β2 = 0.999 and gradient

descent with momentum [49], with µ = 0.9. We do not perform any hyperparameter

optimisation.

Non-linearity

A priori we should not expect the natural cubic spline solution to hold for activation

functions other than ReLU. This is because for other non-linearities, the variational prob-

lem in 4.5 is changed to include a different linear operator L, as detailed in Section 4.2.

In the experiments, we replace ReLU with one of the following:

33

� Gaussian Error Linear Unit (GELU), introduced in [50] as:

GELU(x) = xP (X ≤ x) = xΦ(x) = x · 1

2

[
1 + erf(x/

√
2)
]

� Leaky ReLU, parameterised by a constant α :

R(x)

{
x, x > 0

αx, x ≤ 0

� Exponential Linear Unit (ELU), defined as:

R(x) =

{
x, x > 0

α(ex − 1), x ≤ 0

� Sigmoid: R(x) = 1
1+e−x

� Hyperbolic tangent, R(x) = tanh(x)

Parameter initialisation

Parameter initialisation affects the bias of gradient descent in two ways. First, through

curvature penalty function, which in turn controls the solution to the variational problem.

Then, for networks that to not use ASI, they also determine the value of f(x,θ0). We

study the case where parameters are initialised uniformly in a given interval, resulting in a

constant curvature penalty. The motivation for this is two-fold: first, uniform initialisation

is the default in PyTorch, a popular deep learning framework [51]; second, for uniform

curvature penalty, we know that the solution to the variational problem is a natural cubic

spline.

There is, however, a nuance to the uniform initialisation. As a reminder, given a net-

work whose weights initialised uniformly in the interval [−aw, aw] and biases initialised

uniformly in [−ab, ab], the curvature penalty is constant on the interval [−I, I], I ≤ ab
aw

.

In this interval, the solution to Eq. 4.5 is a natural cubic spline; outside the interval,

the curvature depends on x, and the solution is different. So in practice, if we initialise

the parameters such that, say, ζ is constant on [−0.5, 0.5], for any data lying outside this

interval we should expect f(x, θ∗) to not track the natural cubic spline.

We run experiments as follows:

(a) all baseline experiments use uniform initialisation W ∼ U [−1, 1],B ∼ U [−2, 2]. This

makes the interval on which the curvature penalty is constant I = [−2, 2]. With

data normalised to lie in [−1, 1], the solution to Eq. 4.5 is a natural cubic spline.

(b) unit normal initialisation: W ∼ N (0, 1),B ∼ N (0, 1). For normal initialisation,

the curvature penalty depends on the data as in 4.6, so we should not expect the

34

variational problem to be solved by the natural cubic spline for these experiments.

(c) loosely distributed weights, tightly distributed biases: W ∼ U [−2, 2],B ∼ U [−1, 1],

with ζ constant on I = [−0.5, 0.5]. Because the data is in [−1, 1], the natural cubic

spline is the solution to Eq. 4.5 only on the sub-interval I; outside that interval we

expect the network to not approximate the spline.

Adjusting data

Theorem 1 holds for data that is adjusted linearly. The motivation for adjusting the

data is that the second derivative is invariant to addition of linear terms. In one of the

appendices in [13], the authors show that the theorem also approximately holds for the

original data.

More data

The numerical experiments in Appendix A of [13] seem to use very few data points –

maybe even 5 for some of the plots –, which might be a limitation. In our experiments,

we consider up to 50 data points. Some are selected because they are interesting values

for the function the dataset represents, and others are generated uniformly in the interval

that spans the data. An extension to this could be generating data points non-uniformly,

i.e. with more points clustered in a region of the interval.

Loss function

Following the recommendations in Appendix O of [13], we carry out several experiments

with loss functions other than mean squared error. Specifically, we use L1-loss (mean

absolute error) as well as the Huber loss [52], where the latter is defined as:

Lδ(y, f(x)) =

1
2
(y − f(x))2, for |y − f(x)| ≤ δ

δ ·
(
|y − f(x)| − 1

2
δ
)
, otherwise

(4.13)

4.3.4 Hardware and software

All experiments were run on a high-performance computing cluster. Most of the small

models did not benefit from running on a GPU, so those experiments were run on

CPU nodes only: Intel Xeon Icelake with 6760 MiB of RAM per CPU. Larger networks

were trained on nodes running AMD EPYC 7763 64-Core Processor 1.8GHz, 1000 GiB

RAM, and NVIDIA A100-SXM-80GB GPUs. Networks were implemented using PyTorch

Lightning[53] and experiments were tracked using the Weights and Biases platform[54].

We use an implementation of the natural cubic spline in SciPy[55]. The source code is

available on Github1, and the experiments themselves are publicly available via a dash-

board 2.

1https://github.com/inwaves/implicit-bias-of-shallow-wide-nets
2https://wandb.ai/inwaves/gen2/

35

https://github.com/inwaves/implicit-bias-of-shallow-wide-nets
https://wandb.ai/inwaves/gen2/

Chapter 5

Findings

Having described the experimental setup used in this paper, in this chapter we present

our findings. We start with the outcomes of our attempts to replicate the numerical

experiments in Appendix A of [13], which are concerned with the predictions of Theorem

1. Then, we discuss our findings on experiments which vary parts of the setup as presented

in the previous chapter. Finally, detail our results on the interpolation and extrapolation

tasks.

5.1 Replication

Theorem 1 holds empirically for the sine, parabola, and piecewise polynomial datasets.

That is, as the number of hidden units n is increased we see a decrease in the variational

error that is roughly proportional to 1√
n
. Figure A.8 shows a log-log plot of the number

of units in the hidden layer against the variational error. For each of the plots, the data

points are represent an average of three training runs, plotted together with their standard

deviations. The orange line in the plots is a linear regressor fit to the data points. The

slope is similar to y = kx−0.5, and the exponent deviates between ±0.1. This is consistent

with results in Appendix A of [13].

There are four datasets for which the error between the network and the natural cubic

spline did not decrease according to Theorem: the constant, linear, square and Chebyshev

polynomial datasets.

For the constant and linear functions, there is a straightforward explanation – these

function are very simple. Looking at the plot for the constant function in figure 5.2, we

see that the variational error for small values of n is already much smaller than the same

sized network on other datasets: 0.004 vs. 0.4 on sine. (On some runs, this error has been

as low as 4×10−7.) We also see that it decreases much slower than 1√
n
. This is consistent

with the idea that the dataset is very simple to interpolate linearly – it actually is a line –

which means that we get a very good fit from very small networks, and bigger networks do

36

not do much better. In fact, these results are reported on data that has not been linearly

adjusted, because to linearly adjust the constant/linear datasets is equivalent to:

{(xj, yj)}Mj=1 → {(xj, yj − uxj − v)}Mj=1

with yj = uxj − v for some u, v ∈ R,
(5.1)

which results in the dataset X = {(xj, 0)}Mj=1. Because of the anti-symmetric initialisation

trick, we know that f(x, θ0) = 0,∀x ∈ X, which means that the loss is 0 without any

training at all. We additionally know that the natural cubic spline can trivially represent

a linear or constant function, because it is a piecewise polynomial function whose pieces

are cubic polynomials, i.e.:

Sj(x) = ajx
3 + bjx

2 + cjx + dj, (5.2)

for which Sj(x) = 0 and Sj(x) = cjx + dj are special cases.

For non-linearly adjusted constant and linear datasets, although the variational error is

small, it is non-zero. This is consistent with the analysis in [46], who find that part of the

generalisation error is due to the non-zero value of the hypothesis at initialisation.

It’s not entirely clear what influences the variational errors on the square and Chebyshev

polynomial datasets, both of which decrease at a slower rate than 1√
n
. One likely expla-

nation that is consistent with Theorem 1 in [13] is that the results hold for “sufficiently

large n”, which for this dataset is larger than any of the values we’ve experimented with.

It’s also worth noting that even the larger networks, when applied to this dataset, do not

reach 0 training error within the finite time they were trained.

Another particularity of the square function is that it is the only function which the

natural cubic spline doesn’t perfectly interpolate, i.e. outside the data points, the spline

does not match the original function. There reason for this is that the square function is

discontinuous:
lim
x→3+

sq(x) = 1

lim
x→3−

sq(x) = 0,
(5.3)

whereas the natural cubic spline S ∈ C2[0, 9]. This means that the spline can track the

square function arbitrarily closely on the two intervals where sq(x) = 0 and sq(x) = 1,

respectively, but it cannot match it at the two discontinuities, where the “bump” starts

and ends.

37

(a) Sine dataset, with network sizes ranging
from 10 to 5000 hidden units.

(b) Parabola dataset, with network sizes
ranging from 10 to 10000 hidden units.

(c) Piecewise polynomial dataset, with net-
work sizes ranging from 10 to 10000 hidden
units.

(d) Chebyshev polynomial dataset, with
network sizes ranging from 10 to 5000 hid-
den units.

(e) Square dataset, with network sizes rang-
ing from 10 to 10000 hidden units.

Figure 5.1: Results of the baseline experiments on univariate regression. Each image is a
log-log plot of the number of units n against the variational error – the difference between
the neural network and the natural cubic spline function. The results state that as the
network is scaled up, the error decreases as 1√

n
.

38

(a) Sine dataset, with network sizes ranging
from 10 to 5000 hidden units.

(b) Parabola dataset, with network sizes
ranging from 10 to 10000 hidden units.

Figure 5.2: Theorem 1 does not seem to replicate for datasets that can be perfectly fit by
a linear regressor, y = ux+v. Here, the datasets generated by h(x) = 0 and h(x) = 2x+3
are fit with very low loss even by small networks, n = 10. For the constant dataset, error
decreases much more slowly than kx−0.5. For the linear, error increases, then falls again.

5.2 Other experiments

Learning rate and learning rate schedules

As a reminder, the learning rate in [13] is determined by starting with a larger learning

rate and halving it until a value is found that enables the training loss to decrease. We

find that this method is not effective in training the network to convergence. A typical

outcome is that the largest learning rate that does so only allows the loss to decrease

down to a plateau, where it remains until the early stopping condition kicks in or until

the computational budget is exhausted. This result is robust across number of hidden

units. Further halving the learning rate from the first value that causes a plateau only

leads to a different, lower plateau. Eventually, the step size becomes small enough for the

network to converge.

We also observed that from one run to another, under the same experimental conditions,

one network converges while another identical network does not. One of the assumptions

in Theorem 1 is that the networks achieve 0 training loss. In practice, this is very difficult

to attain, with many networks plateauing above what could be considered their best

performance. In the interest of reporting accurate results, we take these instances into

account when calculating the variational loss.

We performed learning rate sweeps for some of the experiment configurations and found

that the optimal learning rate depends on both architecture and dataset. Additionally,

a good heuristic seems to be η = 1/n, with smaller networks skewing even smaller (e.g.

η = 1/2n).

39

(a) Shallow ASI network. (b) Deeper non-ASI network.

Figure 5.3: Difference in inductive bias for ASI shallow networks and deeper networks of
the same total number of parameters.

Model size and architecture

We find that wider models train very slowly comparative to their smaller counterparts.

Using the early stopping condition in Eq. 4.12, large models often run on the order of

100000 epochs of training, while still achieving worse training and variational losses than

their shallower counterparts. We carried out a series of tests with a fixed training duration

of 100000 epochs for all networks and found that there are marked differences in wall-clock

time taken by networks of different sizes.

In Table A.1 we detail the findings regarding runtime for networks on the square dataset,

with sizes ranging from 10 to 106 hidden units. There is a six-fold increase in training

time from the smallest to the largest network, and a more than 2x increase from the

second-largest network to the largest network we tried.

At the same time, the loss seems to decrease from 0.04 for just 10 hidden units to 2×10−7

for 160 units, then steadily increase up to a maximum of 0.009 for the largest network.

We find that this is a robust training dynamic for wider networks: they need many more

epochs to converge to good training loss than shallower networks. This is counter-intuitive,

because for deeper networks the opposite is true: larger networks converge to better loss

overall, and they do so faster than smaller networks.

Regarding deeper networks, we find that the predictions from Theorem 1 hold up to

n = 150 for the 2-hidden layer network. Networks larger than this converge to functions

that are less smooth, which no longer approximate the natural cubic spline. This result is

robust across datasets, which points to a change in inductive bias as the network becomes

deeper. It’s worth noting that the deeper networks achieve better training loss than their

shallow counterparts – they just don’t match the natural cubic spline off-data. Figure

5.3 shows an example on the square dataset. For the full variational error results on all

datasets, see Appendix A.2.

40

(a) Applying the Adam optimiser on the
sine dataset.

(b) Applying SGD with momentum on the
sine dataset.

Figure 5.4: The predictions of Theorem 1 seem to be robust to changes in optimiser. With
both Adam and SGD with momentum, the trend is very close to the kx−0.5 line. The
large standard deviation for the smallest network comes from different seeds converging
to widely different variational losses, despite the same experimental set-up.

Optimiser

The results are robust to changes in optimiser. Figure 5.4 shows a decrease in the vari-

ational error that is proportional to 1√
n

as the network size is increased. The networks

trained faster with Adam, and on some occasions to lower training and variational loss

relative to full-batch gradient descent.

Non-linearity

On the sine dataset, the variational error decreases as 1√
n

as we increase the number of

hidden units for all the activation functions we tried. This is in a sense surprising, because

only the leaky ReLU function’s second derivative is a Dirac delta function (see 4.2). For

the other nonlinearities, we should expect the variational problem 4.5 to have a slightly

different solution, and so we should get larger error. But in practice it looks like the fit is

a natural cubic spline, and the error bound still holds (see Appendix A.2).

41

(a) W ∼ U [−2, 2],B ∼ U [−1, 1]. (b) W ∼ N (0, 1),B ∼ N (0, 1).

Figure 5.5: Change in variational error as networks are scaled up. The networks still track
the natural cubic spline function, but the error decreases much slower for the uniform
distribution.

Parameter initialisation

One surprising finding is that under initialisation setting (b) – unit normal initialisation –

the results from Theorem 1 are robust (Fig. 5.5), despite the curvature penalty not being

constant. For the unit normal distribution, equation 4.6 simplifies to:

ζ(x) =
2

π(x2 + 1)2

which even for relatively small values of x ∈ [−1, 1] is non-negligible. To better understand

why this is the case, in future a more general replication of Theorem 1 should solve the

variational problem directly, and measure the error between the solution and a known

solution for other initialisations like the natural cubic spline.

For initialisation (c), the interval where ζ is constant is I = [−0.5, 0.5], while the input

data is x ∈ [−1, 1]. Here, we should expect that the natural cubic spline is not the solution

to the variational problem over the entire support S in equation 4.5, but only over I. We

still observe the neural network approximating the natural cubic spline, albeit with slower

decreasing error as the network is scaled up than the theory predicts (Fig. 5.5a). This

could be accounted for by the fact that most of the error between the network and the

natural cubic spline accumulates on the interval S\I = J = [−1,−0.5)∪(0.5, 1] where the

curvature penalty is not constant. Here again it would be useful to directly compute the

solution to the variational problem and calculate the error against the piecewise function:

g∗(x) =

{
g∗1(x) x ∈ I

g∗2(x) x ∈ J

where g∗1(x) is the natural cubic spline and g∗2(x) is the solution for Eq. 4.5 on J .

42

(a) More data. (b) Non-linearly adjusted data.

Figure 5.6: The predictions of Theorem 1 hold under various modifications to the input
data. On the left, we use 50 data points instead of 10, and the decrease in error happens
slightly faster than 1√

n
. On the right, we do not linearly adjust the original 10 data points.

Adjusting data

On the sine dataset, the result seems to be robust to not adjusting the data linearly. In

Appendix K of [13], the authors prove that Theorem 1 is still approximately correct on

unadjusted data, and upper bound the distance between the solution on adjusted data

and the solution on unadjusted data. Figure 5.6b shows the decrease in variational error

as the network’s hidden units are increased. This modification is robust across different

datasets, in the sense that for the sine, parabola and piecewise polynomial datasets the

error still decreases as expected, while for the Chebyshev polynomial and square datasets

it does not.

As discussed in an earlier section, for the constant and linear datasets adjusting the data

is not a useful experiment. The ASI network, whose hypothesis at initialisation is 0,

always converges to 0 loss; it doesn’t actually require any training. The non-ASI shallow

network and the deeper network converge to very small losses, on the order of 10−13.

More data

Adding more data has the effect of improving the variational error faster than 1√
n
, as in

Fig. 5.6a. In a sense, this improvement masks what we actually want to see: the implicit

bias of the optimiser. Adding more data means that the network fits more data points

which happen to be on the spline (since the latter interpolates the data), potentially

obscuring the bias of the optimiser.

43

(a) Huber loss. (b) MAE loss

Figure 5.7: Results for different choices of loss function. For Huber loss, the error decreases
as expected, potentially because the choice of its hyperparameter δ makes it equivalent
to MSE. For MAE, the error decreases, then increases and remains constant.

Loss function

The results are robust under Huber loss, but not under MAE (Fig. 5.7). Because the

Huber loss is defined piece-wise (Eq. 4.13), using a δ = 1 it is possible that in most

instances the error −1 ≤ y − f(x) ≤ 1, which makes the Huber loss equivalent to MSE.

Further work is needed here to evaluate whether this is the case, and whether for different

values of δ the results no longer hold.

Double descent behaviour

For one of the experiment configurations, we reliably observe a double descent dynamic

with regards to the validation error. As a reminder, this is the mean squared error between

the neural network and the ground truth (see Eq. 4.11). This occurs on the Chebyshev

polynomial dataset, for shallow networks using the ASI trick with n = 100 hidden units.

An initial experiment with these hyperparameters crashed for unrelated reasons, and while

investigating we noticed that its validation error curve did not monotonically decrease

(Fig. 5.8a). After resolving the issue, we reran the same experiment three times, all of

which show a form of epoch-wise double descent behaviour on the validation loss (Fig.

5.8b). At |θ| = 600 parameters, the network should be in the overparameterised regime

relative to the size of the dataset |D| = 10. A similar result is observed for shallow

networks which do not use ASI (see Appendix A.2), but not for the deeper, 2-hidden

layer networks. We did not observe this for other datasets, however we think it worthwhile

exploring this in further work.

44

(a) Initial experiment which exhibits dou-
ble descent-like behaviour with two peaks.
Peaks occur at approximately 800,000 and
1,300,000 epochs, respectively.

(b) Additional experiments show that the
second peak is followed by a long period of
monotonical decrease in validation loss.

Figure 5.8: Double descent behaviour on one of the baseline experiments. For reference,
smaller networks often finish within 50,000 epochs of training, which makes the experi-
ments above 2 orders of magnitude longer.

(a) Under interpolation, the network tracks
the natural cubic spline function on the test
set highlighted in red in the middle of the
graph.

(b) For extrapolation, the natural cubic
spline and the neural network exhibit com-
pletely different behaviours outside the sup-
port S.

Figure 5.9: Interpolation and extrapolation experiments on the sine dataset. The orange
line is the ground truth, f(x) = sin(x); the purple line is the natural cubic spline, which
in the interpolation case overlaps with the ground truth on the entire graph, but diverges
in the extrapolation case. The green line is the neural network.

5.3 Interpolation and extrapolation

For interpolation, the results are consistent with Theorem 1: the neural network ap-

proximates the natural cubic spline even on the test set, and the error between the two

decreases as the network is scaled up. Since Theorem 1 makes no mention of size of the

dataset, we could plausibly use as few as 3-4 training data points that are arbitrarily far

apart to evaluate the fit of the network to the natural cubic spline; we leave this as future

work. Please see Appendix A.2 for the full results on interpolation.

For the extrapolation case, the results in Theorem 1 does not hold. This is because the

variational problem in 4.5 is only defined over the support S = supp (ζ)∩ [minxj,maxxj],

so for any values of x < minxj or x > maxxj we do not actually have a characterisation of

the bias. We find that on the extrapolation interval, the variational error does not come

from the network failing to track the natural cubic spline well. Instead, they diverge

completely. For example, on sine dataset, the natural cubic spline curves up, while the

network is a negatively sloped line (Fig. 5.9b).

45

Chapter 6

Conclusion and further work

In this paper, we find empirical backing for the claim that shallow neural networks trained

on the univariate regression task using full-batch gradient descent are biased toward natu-

ral cubic splines when their parameters are initialised using a particular scheme. We find

that this result is robust across a range of different experimental setups covering different

optimisers, nonlinearities, number of hidden units and loss functions, but that it does not

hold for deeper networks.

We believe that this sort of practical evaluation of theoretical predictions in the literature

on generalisation is useful, as it reveals which explanations have the most predictive

power, as well as how robust they are. While the characterisation we replicate here is

not a comprehensive answer to the mystery of generalisation, it is a useful starting point

for further work to develop a better understanding of how and why deep neural networks

work. In the rest of this section, we’d like to outline, in order of importance, a series of

proposed directions for future research.

First and most consequentially, we’d like to know if a similar sort of characterisation

holds for other deep architectures. Deep learning’s recent success with large language

models [10, 4] has lent more credibility to the scaling hypothesis [56], which states that

to increase performance, all we need to do is use larger versions of the same architecture.

Overall, [56] find that scaling the model up is more important than the precise value of

the depth/width hyperparameters, and there are arguments for both increasing depth

first, then width, as well as vice-versa. Although it is unclear whether there is an optimal

scaling strategy, it seems very likely that future networks will be very large relative to

the networks for which we can get analytical results regarding the inductive bias. This

motivates additional empirical analyses of the biases of large networks.

Understanding the inductive bias of these networks is important beyond the performance

of systems that use them. Today, more and more decisions are made based on output

from machine learning systems. We would like to ensure that these systems are aligned

with human preferences and that they do not behave in ways that causes humans or other

46

sentient beings to come to harm. There are already examples of ML systems violating

principles of fairness, by reflecting or amplifying bias present in their training data [57].

These shortcomings are something we should strive to correct as a field.

Second, it would be valuable to examine the results from [13] regarding multivariate

regression. In real-world deployments, it’s relatively rare that a neural network would

have 1-dimensional input; more often than not, there are hundreds, if not thousands of

dimensions to the input and output. This makes results regarding multi-dimensional

inputs much more practically relevant and potentially actionable. While useful as a

technical analysis, the univariate regression case is unlikely to be directly useful for design

choices for systems in production today. We are particularly interested in approaching the

results for multivariate regression in [13] using the compositionality framework introduced

in [42] to try and shed light on whether shallow networks learn anything like the factors

of variation that give rise to a data point.

Third, there are various ways to extend and improve the analysis we carry out here, for

example by evaluating the bias of the same networks on the classification task. It would

also be useful to plot intermediate outputs of the neural network and look at how the fit to

the natural cubic spline changes with training. To better understand why wide networks

train more slowly, we could try plotting the variational error as a function of both number

of epochs and network size. Finally, it would be interesting to increase the gap between

training points in the interpolation setting to see whether the fit of the network to the

natural cubic spline deteriorates.

47

Bibliography

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,

L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and shogi by self-play

with a general reinforcement learning algorithm,” arXiv preprint arXiv:1712.01815,

2017.

[2] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. Czarnecki,

A. Dudzik, A. Huang, P. Georgiev, R. Powell, T. Ewalds, D. Horgan, M. Kroiss,

I. Danihelka, J. Agapiou, J. Oh, V. Dalibard, D. Choi, L. Sifre, Y. Sulsky, S. Vezh-

nevets, J. Molloy, T. Cai, D. Budden, T. Paine, C. Gulcehre, Z. Wang, T. Pfaff,

T. Pohlen, D. Yogatama, J. Cohen, K. McKinney, O. Smith, T. Schaul, T. Lil-

licrap, C. Apps, K. Kavukcuoglu, D. Hassabis, and D. Silver, “AlphaStar: Mas-

tering the Real-Time Strategy Game StarCraft II.” https://deepmind.com/blog/

alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[3] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour,

B. K. Ayan, S. S. Mahdavi, R. G. Lopes, et al., “Photorealistic text-to-image diffusion

models with deep language understanding,” arXiv preprint arXiv:2205.11487, 2022.

[4] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,

H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko,

J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du,

B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin,

T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra,

K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiri-

donov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai,

M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou,

X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern,

D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with

pathways,” 2022.

[5] O. Lange and L. Perez, “Traffic prediction with advanced graph neural networks.”

[6] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tun-

yasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, et al., “Highly accurate protein

structure prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

48

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

[7] A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tan-

burn, P. Battaglia, C. Blundell, A. Juhász, et al., “Advancing mathematics by guiding

human intuition with ai,” Nature, vol. 600, no. 7887, pp. 70–74, 2021.

[8] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron,

M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg, et al., “A generalist agent,” arXiv

preprint arXiv:2205.06175, 2022.

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language

models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,”

Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[11] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford,

D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark, et al., “Training compute-optimal

large language models,” arXiv preprint arXiv:2203.15556, 2022.

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-

terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al., “An image is

worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint

arXiv:2010.11929, 2020.

[13] H. Jin and G. Montúfar, “Implicit bias of gradient descent for mean squared error

regression with wide neural networks,” arXiv preprint arXiv:2006.07356, 2020.

[14] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning, vol. 4.

Springer, 2006.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” Advances in neural information pro-

cessing systems, vol. 30, 2017.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

ward neural networks,” in Proceedings of the thirteenth international conference on

artificial intelligence and statistics, pp. 249–256, JMLR Workshop and Conference

Proceedings, 2010.

[17] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, “The theory of splines and their

applications,” Mathematics in science and engineering, 1967.

[18] Wikiversity, “Cubic spline interpolation — wikiversity,,” 2022. [Online; accessed

12-April-2022].

[19] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory

to algorithms. Cambridge university press, 2014.

49

[20] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro, “Characterizing implicit bias in

terms of optimization geometry,” in International Conference on Machine Learning,

pp. 1832–1841, PMLR, 2018.

[21] B. Neyshabur, R. Tomioka, and N. Srebro, “In search of the real inductive bias: On

the role of implicit regularization in deep learning,” arXiv preprint arXiv:1412.6614,

2014.

[22] S. Oymak and M. Soltanolkotabi, “Overparameterized nonlinear learning: Gradient

descent takes the shortest path?,” in International Conference on Machine Learning,

pp. 4951–4960, PMLR, 2019.

[23] P. Savarese, I. Evron, D. Soudry, and N. Srebro, “How do infinite width bounded

norm networks look in function space?,” in Conference on Learning Theory, pp. 2667–

2690, PMLR, 2019.

[24] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural

networks, vol. 4, no. 2, pp. 251–257, 1991.

[25] R. Parhi and R. D. Nowak, “What kinds of functions do deep neural networks learn?

insights from variational spline theory,” arXiv preprint arXiv:2105.03361, 2021.

[26] F. Williams, M. Trager, D. Panozzo, C. Silva, D. Zorin, and J. Bruna, “Gradient

dynamics of shallow univariate relu networks,” Advances in neural information pro-

cessing systems, vol. 32, 2019.

[27] B. Woodworth, S. Gunasekar, J. D. Lee, E. Moroshko, P. Savarese, I. Golan,

D. Soudry, and N. Srebro, “Kernel and rich regimes in overparametrized models,” in

Conference on Learning Theory, pp. 3635–3673, PMLR, 2020.

[28] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence and gen-

eralization in neural networks,” Advances in neural information processing systems,

vol. 31, 2018.

[29] J. Lee, L. Xiao, S. Schoenholz, Y. Bahri, R. Novak, J. Sohl-Dickstein, and J. Pen-

nington, “Wide neural networks of any depth evolve as linear models under gradient

descent,” Advances in neural information processing systems, vol. 32, 2019.

[30] L. Wu, Z. Zhu, et al., “Towards understanding generalization of deep learning: Per-

spective of loss landscapes,” arXiv preprint arXiv:1706.10239, 2017.

[31] S. Liu, D. Papailiopoulos, and D. Achlioptas, “Bad global minima exist and sgd can

reach them,” Advances in Neural Information Processing Systems, vol. 33, pp. 8543–

8552, 2020.

[32] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang, “On

large-batch training for deep learning: Generalization gap and sharp minima,” arXiv

preprint arXiv:1609.04836, 2016.

50

[33] D. A. McAllester, “Pac-bayesian model averaging,” in Proceedings of the twelfth an-

nual conference on Computational learning theory, pp. 164–170, 1999.

[34] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio, “Fantastic gener-

alization measures and where to find them,” arXiv preprint arXiv:1912.02178, 2019.

[35] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-aware minimization

for efficiently improving generalization,” arXiv preprint arXiv:2010.01412, 2020.

[36] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson, “Av-

eraging weights leads to wider optima and better generalization,” arXiv preprint

arXiv:1803.05407, 2018.

[37] P. with code, “Papers with code - cifar-100 benchmark (image classification).”

[38] L. Dinh, R. Pascanu, S. Bengio, and Y. Bengio, “Sharp minima can generalize for

deep nets,” in International Conference on Machine Learning, pp. 1019–1028, PMLR,

2017.

[39] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning

practice and the classical bias–variance trade-off,” Proceedings of the National

Academy of Sciences, vol. 116, no. 32, pp. 15849–15854, 2019.

[40] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep

double descent: Where bigger models and more data hurt,” Journal of Statistical

Mechanics: Theory and Experiment, vol. 2021, no. 12, p. 124003, 2021.

[41] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra, “Grokking:

Generalization beyond overfitting on small algorithmic datasets,” arXiv preprint

arXiv:2201.02177, 2022.

[42] L. Schott, J. von Kügelgen, F. Träuble, P. Gehler, C. Russell, M. Bethge,

B. Schölkopf, F. Locatello, and W. Brendel, “Visual representation learning does

not generalize strongly within the same domain,” arXiv preprint arXiv:2107.08221,

2021.

[43] J. Koch, L. Langosco, J. Pfau, J. Le, and L. Sharkey, “Objective robustness in deep

reinforcement learning,” arXiv preprint arXiv:2105.14111, 2021.

[44] D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol,

and A. Courville, “Out-of-distribution generalization via risk extrapolation (rex),”

in International Conference on Machine Learning, pp. 5815–5826, PMLR, 2021.

[45] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Con-

crete problems in ai safety,” arXiv preprint arXiv:1606.06565, 2016.

51

[46] Y. Zhang, Z.-Q. J. Xu, T. Luo, and Z. Ma, “A type of generalization error induced

by initialization in deep neural networks,” in Mathematical and Scientific Machine

Learning, pp. 144–164, PMLR, 2020.

[47] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with warm restarts,”

arXiv preprint arXiv:1608.03983, 2016.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[49] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization

and momentum in deep learning,” in International conference on machine learning,

pp. 1139–1147, PMLR, 2013.

[50] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint

arXiv:1606.08415, 2016.

[51] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance

deep learning library,” Advances in neural information processing systems, vol. 32,

2019.

[52] P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs in statis-

tics, pp. 492–518, Springer, 1992.

[53] W. Falcon and The PyTorch Lightning team, “PyTorch Lightning,” 3 2019.

[54] L. Biewald, “Experiment tracking with weights and biases,” 2020. Software available

from wandb.com.

[55] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,

E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,

J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,

C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-

told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald,

A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy

1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods,

vol. 17, pp. 261–272, 2020.

[56] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,

A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,” arXiv

preprint arXiv:2001.08361, 2020.

[57] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on

bias and fairness in machine learning,” ACM Computing Surveys (CSUR), vol. 54,

no. 6, pp. 1–35, 2021.

52

Appendix A

Supplementary material

A.1 Comparison of runtimes

Table A.1: Increasing the number of hidden units increases the runtime for the same number of
steps (100000 epochs). At the same time, training loss seems to increase from a minimum around
160 units as the network is scaled up.

Size Average runtime (minutes) Average train loss Average variational error Average validation error

10 43 0.04356092 0.20 0.28

160 43 0.00000236 0.06 0.25

640 54 0.00139610 0.07 0.24

2560 48 0.00005435 0.07 0.25

10240 52 0.00873949 0.08 0.25

50000 54 0.00925732 0.09 0.25

100000 54 0.00921736 0.09 0.25

500000 116 0.00923043 0.09 0.25

1000000 246 0.00947294 0.09 0.25

A.2 Additional figures

A.2.1 Other experiments

(a) Leaky ReLU activation function. (b) ELU activation function.

Figure A.1: On the sinx dataset, the solution to the variational problem is the same (the
natural cubic spline) for all the nonlinearities we tried. Here is a comparison of two of
them: ReLU and GELU. In red is the neural network, and in purple we have the ground
truth, with the natural cubic spline perfectly overlapping.

53

(a) Leaky ReLU activation function. (b) ELU activation function.

(c) GELU activation function. (d) Hyperbolic tangent activation function.

(e) Sigmoid activation function.

Figure A.2: On the sinx dataset, the predictions of Theorem 1 are robust to changes in
the hidden units’ activation function.

54

(a) n = 10 (b) n = 100

(c) n = 1000 (d) n = 5000

Figure A.3: The fit of networks of different sizes to the sine dataset containing 10 training
data points. The purple solid line is the ground truth, i.e. sin(x) and the red line is
f(x, θ∗), the function represented by the neural network. As the number of hidden units is
increased, the quality of the fit to the data increases, and the network better approximates
the natural cubic spline. At this scale, the natural cubic spline is not visible because it
perfectly overlaps with the ground truth.

Figure A.4: Double descent behaviour with respect to the validation error on the shallow
neural network without the ASI trick. These networks have n = 100, and since they
do not use ASI, |θ| = 300. The validation error curve shows two peaks followed by a
monotonical decrease for many epochs.

55

A.2.2 Results on interpolation

(a) Sine dataset, with network sizes ranging
from 10 to 5000 hidden units.

(b) Parabola dataset, with network sizes
ranging from 10 to 10000 hidden units.

(c) Piecewise polynomial dataset, with net-
work sizes ranging from 10 to 10000 hidden
units.

(d) Chebyshev polynomial dataset, with
network sizes ranging from 10 to 5000 hid-
den units.

(e) Square polynomial dataset, with net-
work sizes ranging from 10 to 10000 hidden
units.

Figure A.5: Interpolation on the shallow, 1-hidden layer network: change in variational
error as the hidden layer is scaled up.

56

(a) Sine dataset, with network sizes ranging
from 10 to 5000 hidden units.

(b) Parabola dataset, with network sizes
ranging from 10 to 10000 hidden units.

(c) Piecewise polynomial dataset, with net-
work sizes ranging from 10 to 10000 hidden
units.

(d) Chebyshev polynomial dataset, with
network sizes ranging from 10 to 5000 hid-
den units.

(e) Square dataset, with network sizes rang-
ing from 10 to 10000 hidden units.

Figure A.6: Interpolation on the deeper, 2-hidden layer network: change in variational
error as the hidden layers are scaled up.

57

A.2.3 Results on extrapolation

(a) Sine dataset, with network sizes ranging
from 10 to 5000 hidden units.

(b) Parabola dataset, with network sizes
ranging from 10 to 10000 hidden units.

(c) Piecewise polynomial dataset, with net-
work sizes ranging from 10 to 10000 hidden
units.

(d) Chebyshev polynomial dataset, with
network sizes ranging from 10 to 5000 hid-
den units.

(e) Square dataset, with network sizes rang-
ing from 10 to 10000 hidden units.

Figure A.7: Extrapolation on the shallow, 1-hidden layer network: change in variational
error as the hidden layer is scaled up. Some of the errors increase, and several data points
have large standard deviation because of very different functions at convergence.

58

(a) Sine dataset, with network sizes ranging
from 10 to 5000 hidden units.

(b) Parabola dataset, with network sizes
ranging from 10 to 10000 hidden units.

(c) Piecewise polynomial dataset, with net-
work sizes ranging from 10 to 10000 hidden
units.

(d) Chebyshev polynomial dataset, with
network sizes ranging from 10 to 5000 hid-
den units.

(e) Square dataset, with network sizes rang-
ing from 10 to 10000 hidden units.

Figure A.8: Extrapolation on the deeper, 2-hidden layer network: change in variational
error as the hidden layers are scaled up.

59

	Introduction
	Generalisation and inductive bias

	Notation and key concepts
	Univariate regression
	Neural networks
	Natural cubic splines

	The mystery of generalisation
	Learnability and generalisation
	Implicit bias of the optimisation process
	Approximation theory
	Learning regimes and the neural tangent kernel
	Loss landscapes
	Double descent and grokking
	Out-of-distribution generalisation
	Summary

	Gradient descent is biased toward smooth functions
	Problem set-up
	Results for univariate regression
	Experimental set-up
	Data
	Network architectures
	Experiments
	Hardware and software

	Findings
	Replication
	Other experiments
	Interpolation and extrapolation

	Conclusion and further work
	Supplementary material
	Comparison of runtimes
	Additional figures
	Other experiments
	Results on interpolation
	Results on extrapolation

