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Abstract 
 

Video-games contain a simulated reality not unlike ours, where the developer has 
control over constraints and parameters which are inaccessible in the outside world. They are 
generally structured around tasks that are challenging for humans, and in some cases prove to 
be more difficult than other activities to which our species is adapted. This makes games 
ideal for artificial intelligence research and benchmarking. In this project, we build an 
intelligent agent and test it using the General Video Game AI platform. The agent is a 
combination of two algorithms with an outstanding track record in decision-making and 
pathfinding: Monte Carlo Tree Search (MCTS) and A* search. MCTS was used by 
DeepMind in AlphaGo, the first intelligent agent to beat the human champion in the game of 
Go. A* is used widely in pathfinding problems in video-games, navigation and parsing 
grammars in Natural Language Processing. The hybrid agent is benchmarked against a 
standard implementation of MCTS. 
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1 Introduction 
 Video games have been widely appraised in the research literature as one of the best 
tests for artificial intelligence. This is due to the various challenging aspects encountered by 
the player, including dealing with an uncertain environment, planning, making a decision 
with limited information and within a relatively short time, learning which aspects and 
outcomes of the game are desirable and which undesirable, as well as generality of 
objectives. Any difficulties an AI player (also called an agent) may have in its attempts to 
win one game is compounded by the fact that the next game to play may be different in all 
aspects. It is in this sense that training an agent to play a multitude of games becomes useful 
in researching artificial general intelligence (AGI). AGI can be defined as the ability of an 
agent to do the following [1]: 

- Reason under uncertainty; 
- Represent and make use of knowledge, and specifically language; 
- Learn to adapt to new circumstances. 

In theory, an AGI aligned with human values could be tremendously beneficial to 
humanity by creating new technology (a common example is molecular nanotechnology), 
conducting automated research (perhaps leading to the development of interstellar travel), 
and facilitating global policy and coordination problems (e.g. climate change)[2]. There have 
been significant efforts in the AI safety and existential risk domain made in order to ensure 
that the discovery of AGI does not precede the adoption of a governance model optimised for 
the scenario[3]. 

Whereas the AI safety research sphere approaches AGI from a social and governance 
perspective, many of the advancements in AI capability come from applications to limited 
domains with measurable goals and instant feedback. For example, the team at DeepMind 
recently released an agent titled AlphaStar, competing in the real-time strategy game Starcraft 
II[4]. It was able to defeat the game’s built-in “elite”-difficulty AI, as well as two of the top 
ranked players worldwide. In contrast with AlphaStar, which was built specifically to 
compete in Starcraft II games, some agents are built to compete in games that have 
significantly different features which encourage some play styles and discourage others. 

General Video Game AI (GVGAI) was introduced in 2014 as a framework and a 
competition for general video-game playing[5]. The current version contains ~110 games, 
some of which were originally created for the Atari 2600 console. All games are two-
dimensional. Some games are deterministic, which means that they can be modelled as a 
sequence of causes and effects; others factor in randomness, usually manifested as changes in 
the environment. This has an impact on performance since some algorithms fare well in 
stochastic games by using a technique called statistical sampling. Others attempt to search for 
the optimal choice exhaustively, which may not be possible. Some games contain non-
playable characters (NPCs)—for example Zelda and Pac-Man—, whereas others contain only 
the player avatar and environment features such as resources or portals. A full classification 
is offered in [5], taking into account NPC type, whether the game can be won or is simply 
score-based, how many actions are available to the player etc. The competition has several 
tracks with different rules. In the 1-player planning track explored in this paper, a time limit 
of 40ms per turn is imposed, during which the agent must return a valid action. If the agent 
takes too long, it is disqualified.  

One type of algorithm that has occurred many times in the submissions to GVGAI is 
the Monte Carlo Tree Search (MCTS). It has ranked highly in most of its entries, and an 
MCTS-based agent titled YOLOBOT won the 2015 competition by overall score. In the 
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following sections, the performance of MCTS is explored through the creation of a hybrid 
agent. The paper is structured as a review of the relevant research (section 2), followed by a 
discussion of the design and implementation of the hybrid agent (sections 3 and 4), as well as 
the test results and the conclusions drawn from them (sections 4 and 6). Section 5 is 
dedicated to the methodology used while planning and managing this project. 

  
 
2 Literature review 
 The literature review is organised as follows: section 2.1 focuses on the Monte Carlo 
Tree Search algorithm, including a description, algorithm limitations and the motivation for 
an improved approach. Section 2.2 introduces the idea of a hybrid, an agent that uses a 
combination of algorithms to achieve better performance. In section 2.3, the discussion 
focuses on hyper-agents, which choose from a portfolio of algorithms the approach best 
suited to the problem at hand.  
 
2.1 Monte Carlo Tree Search 
 In its current form, the Monte Carlo tree search is the result of two papers published 
in 2006. Coulom[6] is the first to formalise the approach combining tree search with the 
Monte Carlo sampling method. In [7], Kocsis and Szepesvári apply bandit methods to tree 
search by implementing the UCT algorithm (Upper Confidence Bounds for Trees). In the 
years since, MCTS has been applied in many settings, including the game Hex, Chess and, 
more importantly, Go[8]. Its success can be attributed to its versatility: MCTS does not need 
domain knowledge to succeed (it is aheuristic). As the search is run, a search tree is generated 
asymmetrically, favouring more promising outcomes. Finally, given a limited computational 
budget, MCTS always returns the best result thus far (that is, one does not need to wait for 
the search to “finish” to retrieve its output)[9]. 
 
2.1.1 Description 
 The Monte Carlo Tree Search (MCTS) algorithm builds an asymmetrical search tree 
that approximates the value of moves in the problem space[9]. To do so, it relies on statistical 
sampling of possible states until a terminal state or a computational limit is reached. Trees are 
composed of nodes recording the current problem state, the game-theoretical value of the 
current state (i.e. how desirable the state is relative to other states), the number of times the 
node was visited during the search, and other implementation-specific data (see section 
2.1.3). The transition function of the tree comprises the actions or moves that are available 
from a given node. In this paper, these terms are used interchangeably—a “move” in the tree 
does not equate to moving the player avatar in a game. When one of these actions is applied 
to the node, the result is a new node called a “child”. MCTS algorithms have 4 distinct steps:  

• Selection: from the root node, descend the tree until you encounter the expandable 
node which maximises a utility function. “Expandable” means that the node is not 
fully-expanded: there are available moves, or actions, which when applied to the node 
would generate a child node not previously encountered. Selection is applied 
recursively. 

• Expansion: apply one or more of the available actions and add the resulting child 
node(s) to the tree. Together, the selection and expansion step are called the tree 
policy.  

• Simulation: starting from the new child node, simulate possible game states by 
applying a sequence of actions until a terminal state is reached. At its most basic 
level, the strategy applied during simulation—called a default policy—is a sequence 
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of random actions which explore the search space. Most often, a terminal state is not 
reached due to the size of the search space, so a depth constraint is introduced. This 
roll-out depth is typically determined experimentally and has implications on the 
algorithm’s ability to simulate future states (see 2.1.2). In [10], the authors distinguish 
between light and heavy playouts. A light playout means that at each step of the 
simulation, a random action is taken from the set of available actions. On the other 
hand, a heavy playout consists of the use of a heuristic to choose the action.  

• Backpropagation: evaluate the final state reached during simulation according to the 
utility function and back-up that value until the root of the tree is reached. This value, 
∆, is added to the previous value of each parent node; at the same time, their visit 
counts are increased. Backpropagation essentially ensures that the path leading to a 
promising terminal state is explored more heavily than other, lower-value paths. In 
the absence of updates for nodes, MCTS becomes a random walk.   

 

 
(Figure 1: steps of a Monte Carlo Tree Search[9]) 

 
The steps are run in a loop until some computational budget is exhausted, such as number 

of iterations or CPU time. The budget varies according to the purpose of the implementation 
and can be used to control the accuracy of MCTS. Once the search is completed, the action 
recommended is the one leading to the “best” child. There are two main criteria used to 
determine the best child[9]. The algorithm may return the action corresponding to the child 
with the highest value, or to the child with the most visits. While there is some overlap 
between the measures, the highest reward and the highest number of visits do not always 
occur in the same node.  

The utility function used to determine the most “urgent” node to expand during the 
selection step has a large impact on the performance of the MCTS. Repeatedly choosing the 
same node leads to a depth-first style of expansion, where actions lower in the tree are 
explored at the expense of nodes closer to the root. Another solution may be to apply each 
action uniformly; the resulting algorithm, called flat Monte Carlo, works well in some cases, 
but is suboptimal in scenarios with a large search space (akin to a breadth-first search). These 
two variations are at the opposite ends of an exploration-exploitation trade-off. The multi-
armed bandit problem describes how a rational agent may attempt to maximise their utility in 
situations where the best action is not known in advance, may change with time or even 
decrease the more often it is made[11].The process is formalised as a K-armed bandit, which 
is a slot-machine with K arms that have different pay-outs, all unknown to the player. In this 
case, the player’s goal is to minimise their regret, which is the difference between the best 
possible reward at each step and the reward received at that step (equivalent to what is lost 
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due to suboptimal playing). The main result of [11] is the Upper Confidence Bound (UCB), a 
policy that ensures that the expected regret grows only logarithmically, even without 
knowing the reward distribution. The agent should play machine j that optimises: 

 

𝑈𝐶𝐵1 = 	𝑥() + +
2 𝑙𝑛 𝑛
𝑛/

 

where 𝑥()  is the average reward from machine j, n is the overall number of plays so far and 𝑛/ 
is the amount of times machine j was played. The first term of the formula corresponds to the 
exploitation phase; the second, to the exploration phase. When machine j has been played 
many times relative to the total plays, the second term decreases. This results in UCB1 being 
relatively small, even if the reward is large, thus encouraging exploration of other options. In 
some cases, the second term is multiplied by an exploration constant K in order to bias the 
search. In its application to MCTS, UCB1 translates to picking the child node with the 
highest reward that has been visited the least amount of times. By convention,  
 

𝑈𝐶𝐵1012343567	893:7 = 	+∞ 
 
 
2.1.2 Limitations 
 Although it’s a versatile algorithm, the win rate for MCTS in GVGAI games is not 
very high. By one measure, it is only 31%[12]. Additionally, MCTS-based agents do not win 
certain games at all (e.g. Escape and Lemmings). Where there are many available actions, 
there may not be enough time (or iterations) to try each of them, resulting in random 
behaviour. The rollout depth introduced in the simulation step is intended as an upper bound 
for the complexity of the playouts; its drawback is that the algorithm cannot see past the 
horizon imposed by that depth. If, for instance, a search is run with a rollout depth equal to 10 
and a state reached at that depth has a promising value, the tree will follow that path. If a 
losing terminal state lies just past the deepest explored state, the agent may not be able to 
redirect in time (e.g. it may venture too close to a non-friendly NPC).  

Another drawback is speed. Since the games in the GVGAI framework are all real-
time, they have a time limit per move of 40ms, and an agent initialisation time of 1s. This 
severely limits the number of iterations of the search—and in turn, the accuracy of the tree—
as well as the depth of the rollouts achievable. However, such a time limit is realistic if the 
aim of writing an agent is to play the game as a human does. 
 
2.1.3 Enhancements 
 Monte Carlo tree search is aheuristic: it does not need domain-specific knowledge to 
work. This means that it is widely applicable, as well as open for improvement[9]. Although 
domain-specific knowledge is not necessary, it may provide useful gains in performance. In 
[10], Drake and Uurtamo investigate whether it is more advantageous to modify the tree 
policy or the default policy of an MCTS instance applied to the game Go. Modifications to 
the tree policy result in what they call “move ordering”—a specific method of selecting child 
nodes to expand. Adjusting the default policy results in “heavy playouts,” in the sense that 
the states simulated are no longer random, instead being guided by a heuristic. Their finding 
was that biasing the simulations, rather than the selection, results in more significant 
performance gains. 
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 Browne et al. [9] provide an overview of the literature on MCTS, including variations 
and enhancements. Some revolve around changes to the tree policy, either by tuning the 
formula for UCB, or by coming up with novel ways to explore the search tree (for example 
by using a fixed value for unvisited nodes and UCB for visited nodes). Others rely on game 
theory to more accurately value each state (or the reward of each node), since more clarity on 
these rewards should improve the final outcome, regardless of the underlying mechanism for 
search. Still others are concerned with improvements to the simulation step, with some 
variations storing the average reward for an action in a separate table so that actions which 
proved to be useful in a previous context may be repeated. 
 An interesting direction of research is the encoding of macro-actions into agent 
behaviour. In a 2017 paper, Perez-Liebana et al.[13] present the creation of games with real-
world physics on the GVGAI framework. Most games that were initially developed for 
GVGAI rely on grid-physics, which has discrete positions (squares) that the agent can 
traverse. By contrast, real-world physics has continuous states, friction, inertia and other 
forces. This transition from discrete to continuous is particularly problematic for an agent that 
relies on search, since the space of possible states increases by several orders of magnitude. 
To exemplify agent behaviour in this new environment, the authors select two sample 
algorithms: MCTS and a rolling horizon evolutionary algorithm (RHEA) as test subjects. To 
offset the increased branching factor of the search tree, macro-actions are used instead of 
lower-level actions. This has the effect of increasing the depth of the simulation in MCTS, 
since the algorithm is now simulating actions such as “move to nearest sprite of type 
resource.” Part of the findings was that shorter macro-actions result in better performance. 
This is consistent with the trade-off that shorter sequences correlate to poor exploration, 
whereas longer sequences result in inefficient navigation of the map (e.g. frequently 
overshooting the target). The win rates are encouraging, however the set of games that use 
continuous physics may not be large enough to demonstrate consistent agent performance in 
these conditions. Furthermore, macro-actions were not tested in grid-physics games, so an 
agent that does well in one environment may not necessarily do well in the other (this effect 
is termed “no free lunch,” and is discussed later in this section). 
 Nevertheless, introducing continuous physics into games is an important step towards 
developing and testing agents that can solve real-world problems. In a sense, the discrete 
states are a “crutch,” a luxury that a bomb-disposal robot, for example, would not have. If 
macro-actions are available, it is likely that agents will be able to “think” of the environment 
in more abstract terms; to ignore the low-level, “move one square to the right”-type moves. In 
a parallel between ant colonies, chess and human brains, Hofstadter[14] discusses the 
chunking hypothesis, which states that chess grandmasters retain knowledge of a chess board 
better than beginners because they cluster pieces together and remember the formation of 
each cluster, as opposed to each piece[15]. To Hofstadter, chunking is not simply a 
particularity of human memory, but the idea that by thinking in higher-level concepts an 
individual may see a different way to achieve their goals, in the same way a chess master 
quite literally sees the best move (findings from the original study are replicated in [16]). 
Perhaps this extends to any intelligent agent. It certainly seems intuitive that to achieve high-
level goals one needs to have at least intermediate-level macro-actions which feed into low-
level, atomic moves. At this stage, the correlation is anecdotal for game-playing; further 
research is needed. 
 Referring specifically to general video-game playing, a more recent exploration of the 
enhancement space showed an increase in win rate from 31% (plain MCTS) to 48.4% (a 
selection of 8 enhancements for MCTS) over 60 games in the GVGAI framework[12]. It is 
worthwhile detailing some of these in order to get an idea of the approaches taken when 
modifying the tree search. The first two ideas, Progressive History (PH) and N-Gram 
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Selection Technique (NST) both relate to repeating an action that has previously led to a 
high-reward state. PH introduces this bias during selection, whereas NST biases the play-
outs. The implementation for GVGAI stores each action and its average reward alongside the 
current position of the player avatar (an action that was useful in position X is not necessarily 
useful in position Y). For example, in the game Frogs, the player avatar is a frog that must 
cross a busy road, then a river stream in which there are logs floating. It is sometimes 
possible for the frog to cross the road in one smooth move across, as opposed to dithering up 
and down the road. This smooth move may be accomplished through a macro-action: a 
sequence of actions compressed into one action. Under the right conditions, a tree search 
using PH/NST, can discover this macro-action and cross the road seamlessly. However, it 
would be undesirable to re-apply the same rule when crossing the river stream, since it’s less 
common that the logs will align. 
 Another proposed improvement is to retain the tree constructed during a previous 
iteration of the search so that previously-discarded states are not explored again fruitlessly. 
This may introduce a memory constraint since the new tree would have to be initialised with 
a sub-tree instead of a root node. Additionally, in non-deterministic games, it may be that 
applying action 𝑎3	from a state 𝑠 sometimes results in state 𝑠3 and other times in state 𝑠/, 
where 𝑖	 ≠ 𝑗. To account for this, the tree reuse method decays previous results by a factor g, 
indicating that previous knowledge about the game may no longer be accurate. 
 Safety pre-pruning refers to the elimination, from the outset, of those actions which 
result in a large number of losses. First, for each action the number of immediate losses is 
determined out of M	generated states. Then, only the actions leading to minimum losses are 
kept; the others are discarded. In conjunction with pre-pruning, the authors propose 
initialising the tree breadth-first, by generating the first ply of the tree before running MCTS. 
This serves to balance situations where there are too many actions available from the root 
node, which would cause MCTS to behave nearly randomly due to its computational 
constraint. 
 Loss avoidance is an adaptation that calibrates how “pessimistic” the search is. 
Normally, upon encountering a losing terminal state at a certain depth, MCTS would avoid 
the path leading to it. This sometimes causes the avatar to behave in erratic ways, such as in 
Frogs, where the frog never ventures out into the road because within the roll-out limit no 
non-losing state is visible—the frog always gets hit by a car. To circumvent this, Soemers et 
al. suggest not back-propagating the losing state, but manually expanding its siblings and 
returning the highest reward amongst them; this ensures that MCTS does not discard an 
entire path due to one negative outcome lower in the tree. However, this introduces 
significant computational costs if there are many losing states, which means there is even less 
time for the search to explore alternatives.  
  One variation that shows promise in the case of GVGAI is knowledge-based 
evaluation of game states. The default evaluation function for a state relies on the game score, 
with special considerations for winning or losing states. More specifically, in a winning state 
the function adds a large positive number to the game score; in a losing state, a large negative 
number is added. The problem is that in some games it isn’t feasible to reach a state that 
increases the game score from the initial state, because there are many intermediary steps. In 
Sokoban, the player avatar must push boxes that are in different positions on the map to a 
specific storage location; the score increases with each box that reaches the destination but 
does not change otherwise. The difficulty a standard MCTS player (i.e. Monte Carlo tree 
search with Upper Confidence Bounds) would have with Sokoban is obvious: there is no way 
to know which moves are desirable, and it typically does not see far enough into the future to 
find the “box-at-destination” state. Instead, the state evaluation may rely on the computed 
distance to sprites (objects) on the map. The closer the agent is to a sprite, the higher the 
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reward. The shortest path to each sprite is computed using A* and the distance is factored 
into the state evaluation function. The solution proposed in [12] takes into account the 
existence of different types of sprites (NPCs, resources, portals, “movables”) in GVGAI and 
weights them accordingly. These weights are initially positive and change as the agent 
interacts with the sprites. If collision with the sprite causes an increase in score, the weight 
increases; if the score decreases, the weight is reduced to avoid the sprite (for example a non-
friendly NPC the player has to kill, like in the game Zelda). 
 Another enhancement that proves particularly useful for hybrid agents is deterministic 
game detection. The premise is that if the agent is aware of whether a game is random or 
deterministic, it can tailor its strategy to maximise the score. In a random game, it is unlikely 
that exhaustive search will reach a meaningful outcome, since making a move does not 
always result in the same state, hugely increasing the search space. For example, in the game 
Aliens, the agent can only take three actions: left, right and “use,” which shoots the player 
cannon. Moreover, the aliens always move in a predetermined pattern, approaching the 
bottom of the screen whilst moving left-to-right, then right-to-left. For such a game, where 
from a state 𝑠C, the state 𝑠D that results from applying “use” can be reliably determined, a 
heuristic search such as A* may fare relatively well (because it is known where the player 
avatar will be, where the aliens will be, and what the result of “use” is). However, in a game 
such as Pac-man, where the ghosts sometimes move randomly, it is impossible to fully map 
the search space. 
 In the context of a relatively wealthy enhancement space, a particularly pertinent 
question is whether optimisation for one class of problems offset by a decrease in 
performance in another class. In [17], the authors discuss this under the guise of the “no free 
lunch” (NFL) theorem, which states that the average performance of an optimised algorithm 
tends to be the same as the average performance for all other such algorithms. This means 
that an improvement in one area is paid for elsewhere. Specifically regarding general video-
game playing, Ashlock et al. [18] find evidence that this may not be problematic, since an 
algorithm which is too general is not useful anyway. They go further and state that the games 
humans find interesting are only a small subset of the large space of games available. 
Imagine an equivalent of Aliens where an alien player must “repel” human invaders; further 
picture that due to some sort of civilisational quirk, the alien player would deem invasion a 
winning situation. Writing an agent general enough to play both our version of Aliens and the 
reverse, alien version of Aliens may be an interesting experiment, but completely useless in 
practice.  
 The solution proposed by Ashlock et al. is to have specialised algorithms combined in 
a portfolio which a hyper-agent may choose from. The reasoning here is that some algorithms 
are better in the beginning of a game, whereas some are more naturally suited to the 
endgame. This echoes a common practice in chess engines: when the agent has detected that 
near to its current position there is a win state, it switches to a heuristic search such as A* to 
find the shortest path to that state (e.g. “mate in 4 moves”). To determine which algorithm is 
suitable for each game, the authors propose a method of classification. Developments in 
game classification and feature selection are discussed in section 2.3. 
  
 
2.2 Hybrids 
 In the context of the strengths and weaknesses of the Monte Carlo method, as well as 
an awareness of the NFL theorem, some of the research in general video-game playing 
focuses on a hybrid approach: an agent comprising two or more algorithms which interact. 
The hope here is that together, the algorithms are more performant than when taken 
individually. It may also be the case that one of the algorithms that form a hybrid cannot act 
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as an agent on their own, as is the case with exhaustive search in non-deterministic 
environments.  
 One of the possibilities that has received a lot of attention is a combination of Monte 
Carlo tree search and genetic algorithms. In a genetic algorithm (GA), a possible solution is 
modelled as an individual which is part of a population of programs. At each generation, 
individuals are cloned, mutated (where one or more parts of an individual is changed 
randomly) or crossed-over (two possible solutions serve as parents to create a new individual 
whose structure is a mix of its parents’ structures). Additionally, a fitness function is 
computed for each individual to quantify how closely it resembles a solution; this is can be a 
score to maximise or an error to minimise. After a number of generations, the fittest 
individual may approximate a solution to the problem relatively accurately. One MCTS/GA 
hybrid uses a weighting of features to bias the roll-outs in the simulation step of the 
search[19]. Whereas the features are hand-coded, the matrix of weights is evolved through a 
genetic algorithm, whose individuals constitute MCTS play-outs. The results were promising 
for the game of Space Invaders, where a pre-evolved agent (i.e. whose feature weights were 
evolved before game-play) outperformed a standard MCTS by a mean score of 953 to 674.  
 Using the same idea, Alhejali and Lucas[20] devise a method where domain 
knowledge is used to evolve MCTS roll-outs for the game Ms. Pac-Man. In Ms. Pac-Man, the 
player must eat food pellets on a maze-like map, while being chased by 4 ghosts. Contact 
with the ghosts causes the player to lose a life; the game is over after all 3 lives are lost. Also 
scattered throughout the map are power pills, which, when ingested, allow the player to 
consume the ghosts themselves for a score bonus. In this solution, domain knowledge is 
encoded as parameters in the genetic algorithm, with features such as direction and distance 
to one of the edible ghosts, distance to a power pill or even logical aspects such as whether 
the player is in danger. A closer look at the features reveals similarities to the knowledge-
based evaluation enhancement described in the previous section. The result of the experiment 
shows an improvement over standard MCTS (average score 32,641 to 28,116) and hints at 
the potential of hybrids to perform better than their constituent algorithms. 
 Further work is presented in [21], where the authors perform a cross-test on variations 
of MCTS that use random roll-outs (standard MCTS), evolutionary adaptation as described in 
[19], a knowledge base without evolution and a knowledge base with evolution. The results 
show that for the first three types, the win-rate is between 20% and 25%, whereas for the 
latter, it is 49.2%. An interpretation may be that employing a knowledge base without a way 
of filtering out inconsequential knowledge is not useful; similarly, genetic variation that is 
not anchored in knowledge of the game results in ineffectual agents that only marginally 
improve on the performance of standard MCTS. 
 Another type of hybrid combines MCTS with a rolling-horizon evolutionary 
algorithm (RHEA)[22]. In RHEAs, an individual represents a sequence of actions. The 
RHEA evolves the best possible sequence given a computational constraint (the 40ms time 
limit for GVGAI) and returns the first action in the sequence as the next move to be made by 
the agent. Here, there are different ways of hybridisation: adding MCTS roll-outs to RHEA 
(an integrated hybrid), sharing the computational constraint between the two (an alternative 
hybrid), as well as several enhancements related to domain knowledge. Layering simulations 
on top of RHEA is conceptually simple: first, the current action sequence is evolved; then, 
roll-outs are played from the last state, thereby allowing the agent to see further into the 
future. This has the benefit of allowing an agent to detect paths that lead to a possible loss 
early in the game (as described earlier when discussing the roll-out depth). Finally, the fitness 
of the sequence is computed taking into account the simulated states. The alternative hybrid 
entails using the two algorithms separately: the agent runs a RHEA for a certain amount of 
time, then a Monte Carlo search for the remaining time until the 40ms are reached. In [22], 
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the two are given equal weight, although there may be an optimal time-distribution that is not 
50-50.  
 The enhancements proposed for the integrated hybrid are sequence planning (reusing 
a sequence of moves), occlusion detection (removing actions that occur in an action sequence 
without impacting its fitness) and NPC attitude-detection. The latter explores whether in the 
current game, NPCs are friendly or adversarial. This information is unknown to the agent 
when the game starts and may change throughout play (like in Pac-Man). Because of this, 
agents that are incentivised through knowledge-based state evaluation to explore interactions 
with NPCs may find themselves consistently losing games where NPCs are unfriendly. 
Conversely, agents that are too pessimistic or cautious may never progress in games where 
winning is dependent on interaction with NPCs. One variation is that summarised in section 
2.1.3, where this interaction is calibrated by learning weights associated with sprites on the 
map. The attitude-detection in [22] suggests learning the nature of an NPC before making a 
move towards or away from it through simulation, then applying an extra reward or a penalty, 
depending on its friendliness. To eliminate statistical ambiguity when comparing the 
resulting agents, the authors compute the Elo-ratings[23] of each and rank them according to 
their wins, draws and losses. The best rank is claimed by the integrated hybrid without 
enhancements, closely followed by the same hybrid but with attitude-detection. The 
integrated hybrid has the same number of wins as a standard MCTS but loses less often (4 
losses as opposed to 14). This suggests there is an improvement, though it is not large enough 
to win more games (it just draws more). The alternative hybrid fares worse than standard 
MCTS or a standard RHEA; it is possible that the gains in performance resulting from the 
more robust hybrid approach are not visible given the time limit. Indeed, it is likely that the 
context-switching leaves neither algorithm with enough time to find a meaningful outcome. 
 At least some of the interpretation of these results is based on human understanding of 
the problem-space, which introduces a bias in how performance is analysed. To be able to 
carry out an efficient analysis of an agent’s track record, it must be possible to extract at least 
some indication as to why it makes certain decisions. If an agent is opaque—a black box—, 
even if it is moderately successful it is difficult to improve it since there is no window into its 
behaviour. Moreover, as evidenced by research into robustness[24] and game difficulty 
analysis[22], it is often the case that an agent does well in one type of game but has a poor 
win-rate for others. To address these issues, as well as to find more data points relating to 
performance (not just win, draw and loss rate), Bravi et al.[25] investigate which in-game 
metrics offer information about an agent’s behaviour. To retain domain-independence (i.e. to 
avoid biasing the results towards particular games), the authors only collect agent- and not 
game-related features. Some of these agent features are the recommended action, the 
probability vector for available actions, a value vector for possible states and the percentage 
of the computational budget used. The first three features create basic explainability (or 
transparency): why the agent chose the recommended action. Keeping track of the budget 
used allows for like-for-like comparison between agents, some of which always maximise the 
time used (attempting to use the entire 40ms at each turn), whereas some are more budget-
saving. If it’s possible to achieve the same performance with less time, it may be possible for 
the faster algorithm to be enhanced (by employing the time left) or for the slower algorithm 
to be improved (by modifying internal parameters); all other things being equal, it is better to 
have a faster agent than a slow one. Tracking these metrics allowed the authors to observe 
repeated behaviours such as the agent avoiding certain types of objects, killing NPCs or 
simply maximising the score.  
 For their study into agent robustness, Perez et al.[24] organise a set of modifications 
to game mechanics that lower agent performance. It is important to note that these 
modifications are not game-specific, so the challenge is greater regardless of the type of game 
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played. For example, the authors introduce a score penalty for each move, forcing the agents 
to reach a solution with minimal hesitation; they also discount future rewards based on the 
depth of the state they are encountered relative to the current state. By far the most impactful 
modification is the introduction of noise, which is unpacked into two variations: a noisy 
world and a noisy forward model. The forward model is the functionality within the GVGAI 
framework that allows an agent to explore states in the future without actually making the 
moves towards those states; it is what makes Monte Carlo simulations possible. For the noisy 
world variation, every time an action 𝑎 is recommended by the agent, there is a probability 
that an action 𝑎′ will be taken instead. The noisy forward model includes noise for the action 
to be taken, as well as noise for the actions explored during simulation. Two of the agents 
studied which employed forms of best-first search reported the largest drop in performance, 
whereas a variation of MCTS called open-loop Monte Carlo tree search (OLMCTS) does best 
out of a set of hybrids, RHEA and heuristic search controllers. This may be traced to 
OLMCTS’s lack of domain knowledge, which makes it resilient when noise is introduced, 
whereas the heuristic agents cannot adapt to unexpected cases as easily. In other words, 
knowledge is harmful when incomplete: the agents that relied on their heuristics for an 
accurate picture of the game find themselves at a loss when something unknown occurs. 
Despite the decrease in performance, this does not mean these agents should be discarded; it 
should be possible to complete their knowledge by informing them of the possibility of noise, 
in which case behaviour will be adjusted to reflect the uncertainty of each action taken.  
 Looking at things in perspective, there exist agents whose strengths and weaknesses 
may be complimentary, when properly configured; there are metrics that give a glimpse into 
an algorithm’s behaviour, and there are environment features proven to impact the 
performance of some techniques. Is there a way to compile this information into useful 
knowledge about how to create a general video game agent? 
  
 
2.3 Hyper-agents 
 A hyper-agent is an algorithm designed such that there are two levels of organisation: 
a high-level algorithm and a set of low-level algorithms. The set of sub-agents is also known 
as the algorithm portfolio[26]. The hyper-level chooses one of the low-level algorithms to 
carry out a task, based on its features and known agent strengths and weaknesses. However, 
it’s possible that the hyper-agent does not have much information about the environment or 
know any features about the task at hand; it may also be unclear how some of its sub-agents 
behave in the current conditions. Formally, this is known as the algorithm selection 
problem[27]; it has spawned research into metaheuristics, feature selection and algorithm 
explainability.  
 
2.3.1 Heuristics 
 A heuristic is a rule of thumb; a small, verifiable principle that guides an action. 
Humans use heuristics in day-to-day decision-making, which is governed by uncertainty. 
Often, the choices made using imperfect information may rely on previous occurrences of 
similar circumstances, on social principles, or on memory availability[28]. Importantly, they 
do not rely on explicit calculations of probability, on use of Bayes’ theorem or on a unified 
rational decision-making strategy. It is perhaps not baseless to say that human cognition is 
not adapted to perfectly rational decisions, but to decisions that were good enough to ensure 
survival. Parallels may be made with search agents, whose performance in an immense 
combinatorial space without any heuristic is less than enviable. On the other hand, 
introducing a heuristic doesn’t remove error; indeed, it may not even be the best heuristic for 



 15 

that algorithm and specific problem instance. Algorithms can be said to reflect human bias, 
insofar as their heuristics are human-crafted. The field of hyper-heuristics grew in an attempt 
to reduce this unhelpful human influence.  
 A hyper-heuristic is a rule about how to select or generate a heuristic in order to make 
search more applicable in the general. It is a heuristic about a heuristic. By another definition, 
a hyper-heuristic is either a search method itself or a learning mechanism that optimises the 
heuristic chosen for the algorithm itself. This latter definition encloses a possible 
classification: a hyper-heuristic that learns, and one that does not. Learning occurs from 
feedback about heuristic performance. A concrete example: a hyper-heuristic H1	has a set of 
heuristics A, B and C it can apply to a search algorithm. Assuming an identical search 
scenario repeated 1,000 times, A finds a solution in 3.2s on average, B in 3.5s and C in 2.8s. 
There are two types of learning: online and offline. If, while the search is running H1		notices 
that heuristic C seems to have the best performance and allocates more weight towards C, 
thus applying it more often, online learning has occurred. On the other hand, if after the 1,000 
runs H1	can encode a rule of the type “in this scenario, C does best out of this set of 
heuristics,” it has learnt the optimality of C offline. Put otherwise, the difference lies in the 
point where the search is adjusted. Learning from feedback about performance was an 
important theme for hybrid agents, and it is equally important for hyper-heuristic agents. If 
the interpretation of feedback is delegated to a learning mechanism as opposed to a human 
designer, it may be possible to eliminate human bias towards what we intuitively feel would 
work.  
 Hyper-heuristics can also be classified on a different criterion: whether they construct 
a solution or refine an initial guess. Constructive hyper-heuristics start with a blank slate and 
a pool of heuristic components. At each stage of the game, these components are 
benchmarked against each other and the best one is added to the solution. When a full 
solution is reached and the task is completed, the hyper-heuristic is stopped. The other 
version is called a selective hyper-heuristic (in some sources, “perturbation” or “local-
search”). It starts with a rough guess and repeatedly searches the neighbourhood of similar 
solutions, benchmarking their performance at each step. The termination condition of the 
process is not as clear as it is for constructive hyper-heuristics and may depend on a domain-
specific acceptance state. Different acceptance states lead to different solutions.  
 Examples of applications of hyper-heuristics abound. In one study[29], a selection 
mechanism called tabu search is combined with simulated annealing to determine the optimal 
size of shipping boxes in order to maximise volume used (i.e. leave as little empty space in a 
box as possible). When a heuristic is applied, if it does not result in an improvement of the 
search it is added to a “tabu” list. This list is emptied only when, at the end of the current 
iteration, none of the available heuristics resulted in an improvement. Using this mechanism, 
the search can explore which of the heuristics is optimal at each move. Another application is 
for exam and class timetabling[30], where assigning courses and exams to time slots is 
modelled as a graph-colouring problem. Each node represents an event, while edges are 
conflicts between two events. Constructing a timetable is done iteratively by searching 
through a set of 5 heuristics to efficiently schedule the remaining events. These heuristics 
take into account the number of conflicts of an event with other events, the number of 
conflicts weighted by the number of students involved in the event, the number of 
enrolments, number of conflicts with events already scheduled and number of time slots 
available for each event. Other applications are in vehicle routing, the bin packing problem 
(where an agent must pack objects into a finite number of containers so that the least amount 
of containers are used) and the Boolean satisfiability problem[31]. 
 Whether hand-crafted heuristics for a particular problem are optimal is an open 
question. Another concern that arises is whether their application is optimal, i.e. if the hyper-
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agent can always tell which heuristic to apply given a set of problem features. In [27], Smith-
Miles casts the algorithm selection problem as a learning problem: how a hyper-agent can 
learn to differentiate amongst its subagents, as well as what aspects of their design, 
performance or robustness are relevant to the choice. As in [25], the author highlights the 
need for algorithms to be more transparent, so that researchers can find features that are 
likely to correlate with algorithm performance. A classifier can use a collection of features 
and parameters coupled with data about performance to output which algorithm is well-suited 
for a given type of game. Compiling a useful collection of features has a direct impact on the 
quality of the output, so finding the highest-information gain features are critical (those 
features that reveal the most about an optimal game-algorithm pairing). These can be game, 
algorithm or performance features. In the case of algorithm features, for MCTS the number 
of expanded nodes, leaves (nodes with no children), the tree width and depth and distribution 
of node attributes all offer additional information about the inner mechanism which could be 
used by the classifier. For performance, time and other computational resources are routinely 
used as benchmark. 
 
2.3.2 As applied to video-games 
 Mendes, Togelius and Nealen[32] demonstrate the viability of the hyper-heuristic 
method by classifying GVGAI games based on their features, then training a support-vector 
machine hyper-agent and a J48 decision tree algorithm to select the appropriate controller. 
Features used in the classification are divided in groups according to their focus: resources 
(whether the game has resources, if the avatar has resources, how many different types etc.), 
NPCs (number and type of NPCs), sprites (movable or immovable) and game mechanics 
(dimensions, if the player can attack etc.). Their hyper-agents use offline learning to train 
their models prior to gameplay, but also update the dataset by collecting features during 
gameplay. Figure 2 shows the sequence of actions that their hyper-agent takes at each game 
tick. 

 
(Figure 2: hyper-agent gameplay with GVGAI[32]) 

 
 The algorithm portfolio in [32] consists of previous winners of the GVGAI 
competition adrienctx, JinJerry and YOLOBOT as well as four sample controllers included 
with the framework: MCTS and its open-loop variant, a rolling-horizon evolutionary 
algorithm and a greedy hill-climbing agent which picks the state with the highest reward at 
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each game tick. While training the models, the game features with the highest information 
gain were found to be the types of NPCs, types of resources that the player has and whether 
the player can move vertically. The subagents picked according to these features were 
adrienctx, YOLOBOT and JinJerry, suggesting that the hyper-agent quickly learned to exploit 
the most powerful algorithms and steered clear of the weaker ones (for example, there was no 
occurrence of the hill-climbing algorithm). The two hyper-agents outperformed the strongest 
subagent, YOLOBOT, by 721 wins for the SVM, 709 for the J48 decision tree and 654 for 
YOLOBOT, out of a total of 1,025 game plays. Results seem to hint at the potential of hyper-
heuristic gameplay, with many questions remaining open for research, such as finding more 
or better features to extract from the game environment (or whether it’s possible to extract 
these manually when the game space increases as it did with the introduction of real-world 
physics in [13]). 
  Using machine learning to classify tasks, then choosing algorithms known to perform 
well may seem like an added step when the task itself can be learned using a neural network. 
On the other hand, it may be the case that to achieve the kind of generality needed for strong 
AI, the agent would need some sort of algorithmic toolbox that it can refer to as needed. 
There is strong intuitive appeal to the idea—although most of cognition is invisible to 
humans, there are common strategies that people use, for example when problem-solving or 
when trying to learn a new language. In the same way that original formulations of AI 
encoded knowledge as expert systems (the “what,” declarative knowledge), perhaps strategy 
can be encoded as modular algorithms and heuristics that can be mixed and matched for the 
situation at hand (the “how,” procedural knowledge). In this sense, the problem can be 
approached from two angles: improving classifiers and finding better features (machine 
learning) or coming up with yet more efficient algorithms (algorithm creation). With the 
recent machine learning advances, this does not seem unattainable, though AGI is still some 
way away.  

Declarative and procedural knowledge could both be said to belong to instrumental 
rationality—what an agent knows about the world and what it knows how to do in order to 
achieve its goals. There is one more type of knowledge: the “why.” The ethics of a general AI 
is by far the most impactful aspect of its invention. Given humanity’s close calls throughout 
history, especially since the invention of nuclear weaponry, it is important to understand the 
leverage our species would achieve with the invention of AGI—leverage that could lead to 
creation and flourishing, or to destruction and evenf extinction. Small steps towards better 
governance, towards more transparent technology (hence explainability) and towards higher 
awareness of the risks may compound into significant benefits in the near- and far-future. 
 
3 Project aims  
 The goal of the project is an exploration of the hybrid and hyper-agent methods for 
general video-game playing. As detailed in the initial report[33], the objective was a hybrid 
agent that uses MCTS and A* to play games on the GVGAI framework. The agent should 
follow framework constraints such as the computational budget for initialisation (1s) and 
move decision (40ms), as well as being compatible with the game-playing mechanics. 
Implementation specifics are discussed in section 4.2.2. Also, part of the goal is to 
benchmark the new agent against other successful GVGAI competitors; this was reduced to 
testing against the standard MCTS implementation due to the computationally intensive task 
of playing several levels per game for 110 games. Testing is discussed in depth in section 4.3.  
 Throughout the project, a lot of attention was directed towards a good way to think 
about the problem of algorithm hybridisation: which algorithms work well with MCTS, how 
they should be combined and what the technical obstacles would be in doing so. Specifically, 
it remained unclear for some time whether it is optimal to time-share between A* and MCTS 
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or to use A* as a path-finding subagent and MCTS as a hyper-agent. Most of the types of 
agents considered did not get implemented due to time constraints. A review of the ideas that 
were explored as well as a discussion of the choices made is presented in section 4.2.1. 
 
 
4 Technical documentation 
 The outcome of the project is a hybrid between Monte Carlo Tree Search and Time-
Bound A* search with three enhancements: a knowledge-based evaluation of game states, a 
simple implementation of move history called inertia, as well as breadth-first tree 
initialisation.  
 
4.1 Software used 
 As the agent needs to be compatible with the GVGAI framework, it is implemented in 
Java. An agent is defined as one or more classes of which one must implement the 
AbstractPlayer interface. This interface defines a constructor and an act method that 
gets called at each game tick. The act method must return an action belonging to the 
enumeration Types.ACTIONS, which in turn encompasses all known actions for a player in 
GVGAI. Notably, for each game type, the actions available are only a subset of all actions 
defined; for example, in Aliens one cannot move up and down, whereas in Zelda, the avatar 
can move up, down, left, right and apply the USE action to attack enemies. The 
implementation of both MCTS and TBA* uses no outside libraries but depends heavily on 
GVGAI specifics.  

The design process was made easier by since it was known that the resulting agent 
would have to integrate with the GVGAI framework. In fact, this was a useful starting point, 
since many of the details were known before designing the algorithms, such as implementing 
AbstractPlayer and communicating with the forward model through a 
StateObservation object. The latter encompasses all the game knowledge available to 
the player. A few examples are the score, whether the game is finished (which then ramifies 
into a winning and losing state), the available actions, the player health points as well as the 
two-dimensional coordinates of sprites on the map (resources, portals and NPCs). The player 
interacts with this StateObservation object, advancing the state by applying an action. 
Another key component of the agent-game interaction is the ElapsedCpuTimer object, 
which keeps track of the time spent by the controller per move. According to competition 
rules, a controller that deliberately overshoots the 40ms limit per move while still returning 
an action within 50ms has the NIL action applied, which has no effect on the game. 
Controllers that do not return any action within 50ms are disqualified from the competition. 
A final point about the framework itself is that includes sample controllers. As of late 2018, 
these were Monte Carlo tree search, adrienctx (the winner from 2014, an open-loop 
expectimax tree search), a rolling-horizon evolutionary algorithm, a greedy hill-climbing 
algorithm as well as two very simple controllers (one picks a random action, the other simply 
applies NIL at each tick). These allow prospective participants to investigate some of the 
common solutions instead of starting from scratch. Additionally, one rule of the competition 
is that if an agent is submitted to participate its authors agree to publish the source code; as 
such, the public has access even to YOLOBOT, one of the highest-ranking agents to date. 
 To test the resulting hybrid against MCTS the rank sum test[34] was used as 
implemented in the Python library scipy[35]. This was opted for despite the change in 
programming language due to scipy being one of the foremost libraries for statistical 
analysis globally, as well as due to the intuitive implementation of ranksums in the stats 
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package. Microsoft Excel was used to interpret the results manually and generate the 
visualisations. 
 
4.2 Design and implementation 
 
4.2.1 Design process 
 The agent was designed iteratively, through successive refinement of the initial A*-
MCTS idea. One of the ideas explored is a hybrid that has a high-level MCTS (HL-MCTS) 
algorithm and two low-level algorithms: another MCTS (LL-MCTS) and A* search. HL-
MCTS would consider macro-actions, which are then delegated to either LL-MCTS and A* 
on the basis of a heuristic. This heuristic was investigated further from the viewpoint of game 
determinism. In [12] a method of checking for game-determinism was proposed. An 
equivalent implementation would be to have an expected reward model: an action is 
recommended by one of the two low-level agents, the expected reward of this action is 
stored; if, when taken, the action results in a different reward, the game probably contains 
randomness. This verification would be the basis of cycling between the two low-level 
agents, since it is known that heuristic search does not deal well with randomness and 
noise[24].  Another possibility is to use the initialisation time of 1s to run A* search to find 
the optimal path to an end state. Then, at each tick, the agent checks that the actual reward 
equals the expected reward. If it does, the next move on the path is made; if it does not, a 
move is picked by LL-MCTS and the A* path is recomputed (fig. 3). Appendix 2 contains a 
flowchart describing the mechanics of such an agent. 
 

 
(Figure 3: adjusting a previously computed path with A*) 

 
An alternative to using a heuristic to decide between the subagents is time-sharing, as 

mentioned in [22]. It is likely that this results in suboptimal performance but was chosen due 
to its simplicity. 
 One obstacle to using heuristic search as a player of real-time games is that most 
search algorithms are not anytime algorithms (these return a solution even if interrupted). 
This is an essential property for a GVGAI agent, as there is a hard cut-off point at 40ms and 
it is not acceptable to return an action only some of the time. Variants of A* search that work 
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in real-time are part of the literature on re-planning algorithms. Broadly, these work by 
limiting how much of the search is done at a time, based on the computational budget 
available. Anytime Dynamic A*[36], for example, reuses partial solutions and decreases a 
suboptimality bound if there is time left, making the search more accurate. ADA* has been 
successfully applied to robot path-planning. Another re-planning algorithm is time-bounded 
A*, presented in section 4.2.2. The alternatives for the heuristic search were not evaluated for 
their benefits and drawbacks—instead the choice was for the simpler, easier to implement 
algorithm that could be adapted to GVGAI. Further work may be centred on comparisons 
between hybrids that use different re-planning algorithms, perhaps without other 
enhancements so performance is accurately measured. 
 Also worth evaluating is the design of macro-regions. A macro-region is a cluster of 
positions on the map grouped in a particular way. These regions could be based on map 
layout (e.g. a 9x9 grid map could be clustered into 3x3 squares, like in Sudoku), or on the 
presence of an interesting feature (e.g. a macro-region containing an NPC or a portal. Layout-
based clusters are easier to implement, but don’t necessarily contain any useful information, 
whereas feature-based clusters can be tricky to define. For instance, NPCs move around the 
map and portals may only be enabled on acquiring a resource, meaning that clusters would 
have to be recomputed dynamically. At least for grid-based games, where at each tick sprites 
can only move in 4 directions, this could have another use: knowing the general area of an 
enemy NPC. However promising, this was not implemented because it would introduce 
additional complexity at the action level, with macro-actions such as “move to the door” or 
“move to square Y” being necessary to take advantage of a macro-region layout. 
 
4.2.2 Monte Carlo tree search and time-bounded A* search 
 Initially, the MCTS was implemented separately from the GVGAI sample (denoted 
sampleMCTS from now on) since it would offer more insight into the key concepts of the 
search. This agent followed the structure presented in [9] under “Algorithm 2”, an 
implementation which uses UCT as the basis of the tree policy. Unfortunately, some of the 
constraints in the pseudocode conflicted with the specifics of the framework, causing small 
pieces of functionality to be unnecessarily complicated and error-prone—for example the 
best action could not be returned directly, as actions are not intrinsically connected to the 
resulting child node. Instead, in GVGAI each action and each child node correspond to an 
index—this is how the connection is retraced between the two. For simplicity, the 
sampleMCTS algorithm was adapted to the purposes of this paper. The reasoning behind 
reductions of scope is discussed in section 5.1. 
 For the first adaptation, the state evaluation function was changed from a simple 
assessment of game score to a knowledge-based heuristic that takes into account score, player 
health, whether the current state is a terminal state (winning or losing) as well as distance to 
the nearest resource, portal and NPC. The final state reward is characterised by the following 
equation: 
 
𝑄 = 𝑠𝑐𝑜𝑟𝑒 + 100 ∙ ℎ𝑒𝑎𝑙𝑡ℎ − 𝑤U64V0U86 ∙ 𝑑U64V0U86 − 𝑤XVU5Y: ∙ 𝑑XVU5Y: − 𝑤Z[\ ∙ 𝑑Z[\ 

 
where the weights are tuned manually to 100, 100 and 50 for resources, portals and NPCs, 
respectively. This is to encourage exploration towards resources and portals while remaining 
cautious around NPCs, since they can be adversaries. Training weights as in [12] would 
result in better performance since the weights would be fine-tuned as the agent explores, but 
is out of scope for the current project. A tweak similar to the NPC attitude check[22] would 
also help to train 𝑤Z[\  to a more accurate value. Transitioning to a knowledge-based 
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evaluation significantly improved the performance of a greedy hill-climbing agent, which for 
each tick picks the best move available according to the evaluation function. 
 Second, the tree in MCTS is initialised with breadth-first search to ensure the Monte 
Carlo search has pre-expanded nodes to which it can assign UCT values. As outlined 
previously, this is to avoid quasi-random behaviour in games where the branching factor is 
high and there is not enough time to try all available actions. This is as simple as generating 
the root node’s children by looping through the available actions; the root node is defined as 
a node whose parent is null. Given the grid physics in GVGAI and the number of available 
actions always being less than 6 (UP, DOWN, LEFT, RIGHT, USE, NIL), a high branching 
factor is not possible. Instead, the breadth-first initialisation results in a small speed boost in 
that calls to the expand function are avoided for the first child nodes. 
 Finally, a concept similar to inertia is implemented when MCTS recommends a move; 
this is a simple version of progressive history[12] where at each game tick there is a 
probability that instead of taking the recommended action, the agent takes the action it took 
in the previous tick. This results in longer sequences of moves and may be one way to 
achieve simple macro-actions (which do not necessarily have a complex arrangement of 
atomic actions). The probability is pre-set to 50% which results in equal exploration of longer 
sequences and normal, one-action-at-a-time gameplay. Further work can be done here to 
determine experimentally what the optimal value is for action repetition. In [12], previous 
successful actions are stored together with their context, which allows for more informed 
moves; there are also other ways of encoding macro-actions, such as through individuals in a 
genetic algorithm.  
 The variant of A* used in the hybrid is described in [37]. Time-bounded A* is an 
adaptation to the original heuristic search that results in an anytime algorithm. TBA* works 
by having a fixed amount of state expansions occurring at each iteration. Once this limit is 
reached, the optimal state amongst the ones expanded is traced back to the current position, 
thereby creating a path from the current state to the destination. Similar to the expansions, the 
trace-back also only occurs a fixed number of steps at a time. Together, these two limits 
ensure the real-time property of TBA*. In this implementation, the algorithm quickly hits the 
maximum memory limit due to the game states stored in the open and closed lists, since the 
states contain a lot of information. To work around this, states can be evaluated when 
expanded, but only stored via a unique ID. Alternatively, states that have been in the lists for 
longer than a specified limit may be pruned, since it is unlikely they will be explored. One 
more limitation is that in order to work, A* needs a heuristic for the distance from a state to 
the goal state. This is not easily achieved for the games in GVGAI, since the only 
information available is about the current state and states previously expanded. One solution 
may be to use the knowledge-based heuristic described earlier, or to only use TBA* as a 
path-planning algorithm when the destination is known. 
 The two algorithms are combined in a time-sharing hybrid. MCTS runs 80% of the 
time and TBA* for 20% of the time (i.e. at each turn there is a 0.8 probability that MCTS will 
run for 40ms, otherwise TBA* will run). This solution can be refined by testing for 
determinism and running MCTS if the game is stochastic, TBA* otherwise; this is done by 
YOLOBOT with MCTS and breadth-first search. An obstacle to creating the hybrid was 
limited visibility into how the agents interact. Although there are tools within GVGAI that 
log results and agent moves, sampleMCTS does not output the structure of its tree or the 
states considered ranked by their reward, both of which would be useful. In the interest of 
focussing on core functionality, simple output statements were coded in instead of unit tests 
to evaluate the behaviour of functions in sampleMCTS. These basic logs offered a glimpse 
into the internal mechanics and helped debug the errors that came up. 
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4.3 Testing 
 The hybrid agent was tested across all 110 games in the GVGAI framework. Win rate 
and score were collected. SampleMCTS was picked to benchmark the performance of the 
new agent due to the versatility of the algorithm in previous iterations of the competition. The 
test harness was written in Python; it reads the gameplay results from a file and creates two 
arrays, corresponding to the two agents. These arrays contain either the win rate or the game 
score. Then, each element from the first array is compared against its corresponding item in 
the second array to determine whether values in the first sample are more likely to be larger 
than values in the second sample. The test returns two values: the Wilcoxon rank-sum 
statistic and the p-value of the test. The null hypothesis for this test is that the two sets of 
measurements are drawn from the same distribution, i.e. there is no statistically meaningful 
difference between the sets of values. A small p-value indicates strong evidence against the 
null hypothesis—which means that one set is likely to contain higher values. The array with 
the higher values corresponds to the more efficient agent. 
 For each game, the first level was played 10 times. The game is considered won if 
more than 50% of plays result in an agent win, whereas the score is the average score of the 
10 plays. The tests took approximately 12 hours to run on an Intel i7 processor, 3.3Ghz with 
16Gb of RAM at 1867MHz. The rank-sum test was run in three configurations: comparing 
win rates, scores and scores weighed by their win-rates, respectively. The latter meant that 
situations where a higher score was achieved despite losing the game were not considered as 
a performance improvement. For all test cases, the p-value is not small enough to reject the 
null hypothesis, suggesting very similar performance for the two agents (p-values were 0.935, 
0.930 and 0.887 for the three test configs). 

On further examination of results by win-rate, both agents win 34 out of 110 games 
(fig. 5). When comparing scores weighted by the win-rate, MCTS outperforms the hybrid by 
a total score of 2,828 points to 2,288. There are two games which the hybrid wins that 
sampleMCTS never wins (Bait and The Shepherd), and several others that the hybrid draws, 
which the sample loses. On the other hand, games Butterflies, Chip’s Challenge, Ghostbuster 
and Zen Puzzle are won by the sample but drawn by the hybrid. In the future, it may be 
useful to observe some of the plays to see if any difference in style is apparent. Appendix 1 
contains the results structured by game.  

 

 
(Figure 4: results for a subset of the games) 
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(Figure 5: the performance difference is negligible over the 1100 plays) 

 
 Since the p-values are not small enough, it’s unclear which of the two agents is better 
(if any). It may be the case that more testing would reveal better results, for example by 
playing all levels for each game a fixed number of times. In the context of other 
enhancements resulting in improvements of up to 17.4% [12], it is not immediately clear why 
the hybrid configuration fails to perform better. Further work is needed to better integrate the 
two algorithms that make up the hybrid, perhaps using TBA* as a path-finder only instead of 
as a game-playing agent, as well as quantifying the impact each enhancement has on the 
performance of MCTS by benchmarking them individually.  
 
5 Project planning 
 The project was divided into JIRA epics that correlated to deliverables throughout 
term: initial report, initial oral examination, abstract and poster, final report and the final 
presentation, demonstration and oral examination. Each epic contains stories that correspond 
to high-level tasks to be carried out for that deliverable. For example, the final report had the 
following stories: advanced literature review, building product context, describing objectives 
and their achievement, product technical challenges, testing plan, quality assurance and 
reflection. Stories were further divided into small, manageable tasks; for the literature review 
these are individual papers to summarise; for the product, they were pieces of functionality of 
the agent. This structure helped guide work towards the most important areas as well as keep 
track of tasks critical to the project.  
 As the solution was developed, changes were pushed to the school GitLab server. 
Papers that were reviewed, Endnote reference libraries and the poster and abstract were 
included here for ease of use from different machines (at home and at University). Commits 
were created for mini-milestones when writing the final report just in case there was a need to 
roll-back the latest section. 
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5.1 Reflection 
 Good reflection should include a discussion of project risks. In the initial report[33], 
the author mentions time-management as the biggest threat to achieving the project 
objectives. This turned out to be a good estimation. The breadth and depth of the project were 
mostly unknown beforehand—the author had no previous experience with game-playing 
other than his own and only brief knowledge about MCTS from a previous module. As 
problems were encountered along the way, it was a good idea to reduce the scope and 
abstract away some of the complexity.  

Most of the initial work was dedicated to acquiring an in-depth understanding of 
MCTS by writing it from scratch. This was a moment when the difficulty of writing even a 
seemingly simple algorithm was underestimated. Many hours were lost attempting to get this 
initial version to integrate with GVGAI, mainly due to bugs. Even though the agent would 
eventually compile and return a move within the 40ms, it tended to repeat previous moves, 
possibly due to a problem with child expansion within the tree policy. In fact, the watershed 
was when the original implementation of MCTS was abandoned in favour of working on 
improvements to sampleMCTS. 

From then on, it was relatively easy to implement the three enhancements. From a 
coding perspective these were not complex, but it was important to make sure they did not 
break any of the existing functionality. To this end, extensive regression testing was done 
using a subset of games (Aliens being a personal favourite). These enhancements were great 
at building momentum and encouraged the author to not limit the agent to an enhanced 
version of MCTS.  

Another major obstacle was reached when implementing TBA*, especially since it 
was done later in the project, with the deadline for the final report looming. The algorithm 
was largely based on pseudocode provided in [37]. Nonetheless, decisions must be made at 
the point of implementation: how to integrate with GVGAI and with the other half of the 
hybrid agent. Towards the end of the spring term the decision was made to redirect efforts to 
fix A* and enhance MCTS* towards preparing the test results and writing the final report. 
This resulted in an agent that is only 70% complete, in the author’s view.  

As expected, the biggest obstacle was managing the project at the same time as other 
deadlines, while having the right balance between an agent complex enough to be interesting 
but not too complex to write. There is room for improvement here: dedicating more time to 
the project earlier in the year would have altered the course later on, making it easier to create 
multiple versions of the agent to compare. In retrospect, too many resources were spent on 
understanding the research and not enough on getting hands-on experience with the 
algorithms. On balance, these risks were managed successfully in that an MCTS/A* hybrid 
was delivered as per the initial project aim.  

Despite no mention of a performance objective in the initial report, it is certainly 
disappointing to not have any meaningful performance increase over MCTS, although this is 
most likely because of implementation specifics and not the MCTS/A* hybrid idea. The 
author considers this exploration of the game-playing AI space an achievement in itself; it 
was mostly fun and only briefly daunting; most importantly, it was instructive. There are 
many possibilities and variations within this idea and given more time a definitive result is 
bound to arise—regardless of its direction (perhaps MCTS and A* do not mix).  

An overwhelmingly positive aspect of the project was exposure to the GVGAI 
framework. Despite having one of the most complex codebases the author has encountered, it 
implements the game mechanics smoothly, the code is easy to read (including some crucial 
comments) and testing is done through a simple class with pre-built methods. This project 
would have been significantly more difficult if the learning curve for the framework itself 
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was steeper. The test harness was almost trivial to write given Python syntax and the simple 
API call to scipy.  
 
6 Conclusion 
 In summary, a hybrid agent was created in order to explore performance 
improvements for the UCT implementation of Monte Carlo tree search. The agent contains 
an enhanced version of MCTS alongside the TBA* algorithm, an anytime version of A* 
heuristic search. The enhancements proposed are breadth-first tree initialisation, knowledge-
based state evaluation and a simple form of action history called inertia. The hybrid is 
benchmarked against an implementation of MCTS with UCT through 1100 total game plays 
on the GVGAI framework. Results are inconclusive, possibly due to no significant 
performance change, or due to a statistical sample of insufficient size.  
 Further work should include an in-depth analysis of the impact of enhancements on 
performance—it may be the case that some of these are harmful overall (in the “no free 
lunch” sense) since MCTS derives much of its performance from being a versatile algorithm. 
There is also a lot to explore in the hybrid/hyper-agent area, given a portfolio of sub-agents 
that contains MCTS and an anytime version of A*. A heuristic based on game features may 
result in markedly higher win-rate and score for the hyper-agent. 
 Advances in the field of AI game-playing have wide implications on the possibility of 
artificial general intelligence. In particular, playing and winning at games which simulate 
reality closer and closer may be a viable approach towards a fully general intelligence. 
Furthermore, throughout history, many, if not all scientific advances have been incremental. 
Researchers build on and rediscover the results of their predecessors until knowledge gives 
rise to the next big invention or discovery. There is no reason to believe human-level AGI is 
different.  
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7 Appendices 
 
7.1. Appendix A 
 Test results for the MCTS/TBA* hybrid alongside results for sampleMCTS. A win-
rate of 1 means the agent won the plays for the game, whereas 0.5 means it drew.  
 

Game Hybrid MCTS 

Win-rate Score Win-rate Score 

Aliens 1 75.5 1 79.5 

Angelsdemons 0 115.5 0 53.5 

Assemblyline 0 0 0 0 

Avoidgeorge 0 9.5 0 1 

Bait 1 5 0 0 

Beltmanager 0 -1 0 -1 

Blacksmoke 0 0.5 0 0 

Boloadventures 0 0 0 0 

Bomber 0 0 0 0 

Bomberman 0 6 0 11.5 

Boulderchase 0 28.5 0 10.5 

Boulderdash 0 11 0 13 

Brainman 0.5 18 0.5 18 

Butterflies 0.5 40 1 45 

Cakybaky 0 2 0 2 

Camelrace 0 -1 0 -1 

Catapults 0 3 0 3 

Chainreaction 0 0 0 0 

Chase 0.5 5 0 4.5 

Chipschallenge 0.5 30 1 36 

Chopper 1 16 1 14.5 
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Circuit 0 0 0 0 

Clusters 0 0 0 0 

Colourescape 0 0 0 0 

Cookmepasta 0.5 16.5 0 6 

Cops 0 5.5 0 3 

Crossfire 0 0 0 0 

Defem 1 50 1 50 

Defender 1 5 0.5 -14.5 

Deflection 0 0 0 0 

Digdug 0 16.5 0 21.5 

Donkeykong 0 7 0 12.5 

Doorkoban 0 0.5 0.5 17 

Dungeon 0 5.5 0 3.5 

Eggomania 0 2 0.5 17.5 

Eighthpassenger 0 -10 0 -10 

Enemycitadel 0.5 2.5 0.5 2.5 

Escape 0 0 0 0 

Explore 1 1 1 1 

Factorymanager 1 1 1 1 

Firecaster 0 14 0 10 

Fireman 0 -26 0 -26 

Firestorms 0 0 0 0 

Freeway 1 1 1 1 

Frogs 0 0 0 0 

Garbagecollector 0 2 0 3 

Ghostbuster 0.5 4.5 1 82.5 

Glow 1 1 1 1 

Grow 1 7.5 1 7.5 

Gymkhana 0 2 0 3 

Hungrybirds 0 0 0 0 

Iceandfire 0 1 0 1 

Ikaruga 0 23 0.5 25 

Infection 1 23 1 26 

Intersection 1 1 1 1 
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Islands 1 1 1 1 

Jaws 1 1066.5 1 1063.5 

Killbillvol1 0 15.5 0 6.5 

Labyrinth 1 1 0.5 0.5 

Labyrinthdual 0 0 0 0 

Lasers 0 0 0 0 

Lasers2 0 0 0 0 

Lemmings 0 -3 0 -5 

Link 0 3650 0 3252 

Mirrors 0 1 0 0.5 

Missilecommand 1 3.5 1 3.5 

Modality 1 1 1 1 

Overload 0.5 10.5 0 8.5 

Pacman 0 113.5 0 205.5 

Pacoban 0 187 0 130 

Painter 1 17 1 18 

Plants 0 16 0 24.5 

Plaqueattack 1 42.5 1 37 

Pokemon 1 1 1 1 

Portals 0 0 0 0 

Racebet 1 1 1 1 

Racebet2 1 1 1 1 

Realportals 0 0.5 0 0.5 

Realsokoban 0 2 0 2 

Rivers 0 0 0 0 

Roadfighter 1 1 1 1 

Roguelike 0 0.5 0 1 

Run 1 1 1 1 

Seaquest 1 551 1 1065.5 

Sheriff 1 8 1 8 

Shipwreck 1 196.5 1 24.5 

Slide 1 1 1 1 

Sokoban 0 0 0 0 

Solarfox 0 7 0.5 26 
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Superman 0 7 0 7 

Surround 1 1 1 1 

Survivezombies 1 8 1 8 

Tercio 0 0 0 0 

Thecitadel 0.5 2.5 0 0 

Themole 0 5.5 0 3.5 

Theshepherd 1 8 0 3 

Thesnowman 0 0 0 0 

Towerdefense 0 0.5 0.5 100.5 

Vortex 0 0 0 0 

Waitforbreakfast 0 0 0 0 

Watergame 0 0 0 0 

Waves 1 52 1 58 

Whackamole 1 49.5 1 44.5 

Wildgunman 1 8.5 1 10 

Witnessprotected 0 0 0 0 

Witnessprotection 0 9 0 9.5 

Wrapsokoban 0 2.5 0 2.5 

X-Racer 0 0 0 0 

Zelda 0.5 6 0.5 5.5 

Zenpuzzle 0.5 25 1 34 
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7.2 Appendix B 
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