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1 Introduction

Studying the relationship between flat minima and generalisation has yielded optimisation algorithms
that are able to induce even higher accuracy for overparameterised networks, reaching state-of-the-
art on high-profile benchmark tasks, such as image classification on the CIFAR-10 and CIFAR-100
datasets[FKMN20][Kri09]. While a universal characterisation of sharpness is elusive, the empirical
backing motivates further exploration of algorithms that deliberately seek out flat minima. In this work,
T investigate the behaviour of one such algorithm, sharpness-aware minimisation (SAM) [FKMN20],
in the context of increasing levels of label noise. I choose to consider the noisy label regime because
it has historically taught the research community useful lessons regarding how deep neural networks
(DNNs) generalise[ZBHT21][AJB*17], a process that’s critical for our understanding of deep learning.
I also look at potential improvements to SAM, and formulate a set of experiments through which to
evaluate them.

2 Related work

Recent literature connects features of the loss landscape with the capacity of neural networks to
generalise. In particular, there is empirical support for the hypothesis that the generalisation gap
(the difference in performance between training and test data) is larger for minima that are sharp,
and smaller for those that are flat. Intuitively, a flat minimum is in a region where the training loss
is more or less the same for the surrounding points in parameter space. There are several formal
definitions of flatness [HS97], [KMNT16], though it is unclear which one most adequately characterises
the phenomenon.

It is sometimes not meaningful to identify flat minima. For example, [DPBB17] show that for non-
negative homogeneous networks there are infinite sets of parameters that are observationally equivalent
- that is to say, they have the same input-to-output mapping. Within those sets, some parameters
will correspond to flat minima and others to sharp minima — all without any change in the outputs.
The derivations are done for deep rectified networks but also hold for convolutional networks. More-
over, for networks where the homogeneity property does not hold, unless a fixed parameterisation is
considered, it isn’t possible to claim a correlation between the flatness of the parameter space and
the generalisation gap. This is because if a network can be reparameterised, it is possible to find an
equivalent parameterisation where there are sharp minima at the exact points where there previously
were flat minima, without changing the loss.

The practical implications of this correlation between flat minima and a smaller generalisation gap is
that optimisation algorithms can be biased toward finding them, instead of simply minimising the loss
function. There are several promising approaches such as entropy stochastic gradient descent[CCS*19],
stochastic weight averaging (SWA)[IPG 18] and sharpness-aware minimisation (SAM)[FKMN20]. For
example, SWA works by first applying stochastic gradient descent (SGD) for a fixed proportion of the
total computational budget using a fixed learning rate to generate a pre-trained model w. For the
remaining budget, SGD is run with a cyclical learning rate, and the weights of iterates corresponding
to minimum values of the learning rate are averaged together. The average of these weights defines a
final model w* which is used to make predictions. These algorithms differ in their training efficiency:
entropy SGD and SWA seem to train in about the same time needed for plain SGD, sometimes faster,
whereas SAM is notably slower.

Separately, there has been growing interest in supervised learning on noisy labels due to the poten-
tial to unlock much more data than is currently available. Datasets on which DNNs currently do well
are carefully annotated, which can be time-consuming. Annotating a large dataset can be infeasible



if there are many classes, or where expert knowledge is required[RVBS17], for example in medical
situations where a diagnosis is to be made based on X-ray scans. It would be useful if DNNs could
generalise well from large datasets whose labels are only correct a fraction of the time. These datasets
can be generated by crawling the web, for example, a situation in which it is impossible to go through
every example and ensure it is correctly labelled.

This area of research is not new, with one of the most influential papers in recent years[ZBH™21]
concluding that networks simply memorise the noise, and therefore train to convergence but generalise
poorly. Since then, our view has become more nuanced, in that it seems that DNNs first learn patterns
in the data, then memorise noise as training goes on[AJBT17].

Robustness to noise also depends heavily on the type of noise. In the setting in [ZBH'21], label noise
is synthetic (also called “blue” noise in the rest of this work, following terminology from [JHLY20]),
and it works as follows: replace the label of each example with another label in the possible classes
with probability p. This means that the overall noise level of a dataset could be e.g. 20%, meaning
only 80% of the examples have their true labels. Even within this subclass of noise, behaviour varies
in a more complex way. In [RVBS17], the authors discover a critical threshold below which DNNs
struggle to generalise: the label accuracy must be no lower than 1% above chance. For a dataset like
CIFAR-10, where there are 10 possible classes, the probability of guessing correctly is one in 10, or
10%. Given this threshold, the label accuracy should be no lower than 11%, or the noise no higher
than 89% of the dataset. [RVBS17] presents additional findings regarding the minimum size of the
dataset that is necessary for generalisation given increasing noise, as well as how noise impacts the
training batch size.

But datasets “in the wild” are not simply randomly labelled; where they are misclassified, their
errors are systematic and skew in ways that aren’t completely random. [WZC™21] introduces two
companions to the original CIFAR-10 and CIFAR-100 datasets, in which the images are annotated by
humans. These new datasets, CIFAR-10N and CIFAR-100N contain sets of labels comprising different
levels of human noise, which [JHLY20] also calls “red” noise. A qualitative difference between red
and blue noise is that red noise contains some relation to the image, visual or semantic [JHLY?20].
For example, with blue noise, the label “orange” could be assigned to something completely unlike an
orange, perhaps a ladybug or a wheel; with red noise, it would be assigned to something that is still in
some way relevant: orange juice, or an orange bottle, or perhaps a photo of a person who was edited
to seem more orange[WZC'21].

In a related line of research, several algorithms that are more robust to label noise have been
produced. State of the art behaviour comes from dedicated algorithms such as MentorMix [JHLY?20],
Mixup [ZCDLP17] as well as from some that were not specifically designed with robustness in mind,
such as sharpness-aware minimisation. In this work, I begin to explore further SAM’s behaviour on
noisy labels by replicating and extending the results in [FKMN20].

3 Sharpness-aware minimisation

Sharpness-aware minimisation (SAM) is an algorithm that optimises a modified loss function which
takes into account some measure of the sharpness of the loss landscape [FKMN20]. The reasoning is
that if sharpness is correlated with a higher generalisation gap, then we should be able to improve
performance by simultaneously minimising both the error of the network and the sharpness of the
surrounding region in weight space.

SAM uses a base optimiser such as stochastic gradient descent (SGD) to perform two conceptu-
ally straightforward tasks. The first is to find an adversarial ascent point wy + é(wy) that is in the
neighbourhood of the current set of weights wy. Intuitively, this neighbourhood comprises points in
parameter space that have similar values for training loss. Then, the gradient of the loss with respect
to the adversarial point is computed, and the update is applied to the current set of weights wyg, such
that:

Wit = W — NVLa(W)|wiew) (1)

In other words, SAM finds the point in the neighbourhood of w; which increases the loss the most.
Then, it determines the direction which decreases the loss most from that point, and takes a step in
that direction starting at the original weights w;. The size of the neighbourhood can be quantified
as the p-norm of the difference of two weight vectors, and in SAM it is treated as a hyperparameter:



p. Finally, SAM also takes into account a regularisation term, which penalises large ¢5 norms of the
weight vectors. The optimisation objective is:

min max Lg(w +€) 4+ \|w||3 (2)
W lellp<p

In the experiments in [FKMN20], the norm of the perturbation € is generally fixed to be the ¢5 norm,
but it can be generalised to any p-norm greater than 1 according to Appendix C.5 of the paper.

The performance of SAM is widely supported experimentally, offering state-of-the-art accuracy on
several tasks including image classification [FKMN20]. As of the time of writing, when applied to
EfficientNet-L2 [TL19], SAM holds the SOTA on image classification on CIFAR [pap]. However, one
limitation of SAM is that it carries out back-propagation twice on each iteration: once to find the
adversarial ascent point, with respect to the current weights w; and another for the final gradient with
respect to w + €. This makes it twice as slow as SGD, for example, which means that experiments
comparing the two typically run SAM for half the number of epochs that SGD runs for [FKMN20].
This was observed experimentally and exacerbated even further by the bootstrap enhancement, see
Section 5.

Another possible pitfall of using SAM is that some regularisation techniques may reduce the cor-
relation between sharpness and generalisation gap by rescaling the parameters without impacting the
loss. For example, weight decay reduces the norm of the weights, making it so that the initial neigh-
bourhood size value is disproportionately large compared to the weights. This makes SAM overly
choosy, seeking out a relatively large neighbourhood in which the loss landscape is flat. One way to
address this is to apply a normalisation operator that essentially scales the size of the perturbation e
to negate the effect of the initial scaling operator[KKPC21]. The resulting implementation is called
adaptive sharpness-aware minimisation (ASAM), and shows increased performance experimentally for
the same computational cost.

Adapting the measure of sharpness to be in lock-step with the weights raises two questions. One is
whether specific absolute values of p have any interpretation when it comes to the loss landscape, and
the other is whether there is a way to update p during training such that “better” neighbourhoods are
discovered. In the ideal case, minima would be part of large flat areas, but in practice this may not
occur as often as we would like. Loss landscapes differ depending on the task, the architecture and
more notably differ when noise is introduced.

4 Experiments

4.1 Experimental design

The experiments in this paper are largely following the design in §3.3 in [FKMN20] regarding robustness
to label noise. I use a ResNet-32[HZRS16] architecture trained for 200 epochs using various levels of
label noise and optimising algorithms. For some of the experiments I ran, hyperparameter choice
slightly differs because of an oversight when I started running them (the exact hyperparameter details
are in Appendix C of [FKMN20]. I did not go back to correct these because the experiments were
relatively expensive to run given my computational budget (see Section 6 for a discussion). The
differences are in learning rate (it is 0.1, should be 1.0) and weight decay (it is 0.0005 instead of
0.0001). Other parameters are identical: momentum is 0.9, label smoothing is 0.1 and batch size is
128. For the noise experiments, for SAM the neighbourhood size hyperparameter p is initially set to
0.1, whereas for ASAM it’s set to 2.0.
The total number of experiments that I wanted to run is 320, broken down as follows':

e 16 total label noise regimes comprising clean, 18% and 40% red noise, then 20%, 40%, 60%, 80%
and 100% blue noise;

e 20 total combinations of optimiser, enhancement and neighbourhood size scheduler. These com-
prise SGD, SAM, ASAM and SWA, each with simple and bootstrapped counterparts. SAM and
ASAM each have experiments for constant neighbourhood size during training as well as three
neighbourhood size schedulers: step decay, exponential decay and step increase.

1For the full experimental setup please see: https://docs.google.com/spreadsheets/d/1k_A2HHLq378gvuAJ9gpHpc_
a3X2uCbMY6H6pQ-WivMw/editPusp=sharing


https://docs.google.com/spreadsheets/d/1k_A2HHLq378gvuAJ9gpHpc_a3X2uCbMY6H6pQ-WivMw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1k_A2HHLq378gvuAJ9gpHpc_a3X2uCbMY6H6pQ-WivMw/edit?usp=sharing

Optimiser | Number of epochs | Bootstrapped? | Duration | % slower than SGD

SGD 1 No 9 minutes, 30 seconds 0%

SGD 1 Yes 22 minutes, 8 seconds 132%
SAM 1 No 17 minutes, 41 seconds 86%
SAM 1 Yes 40 minutes, 2 seconds 321%

Table 1: The duration of one training epoch on a single CPU.

4.2 Noise datasets

The datasets I used were CIFAR-10 and CIFAR-100[WZC™21]. Synthetic noise is equivalent to flipping
the label of an image to a random label with probability p. In the experiments I use 0.2, 0.4, 0.6, 0.8
and 1.0, similarly to [FKMN20]. “Red” or natural noise results from misclassifications by humans of
the images in CIFAR, and was collected by [WZC™"21] into the datasets CIFAR-10N and CIFAR-100N.
We use the two highest-noise labels, “aggregate” (18% noise) and “worst” (40% noise).

4.3 Implementation

The experiments were run on an existing open-source PyTorch[PGM™19] implementation of SAM[Sam21],
and used label randomisation code from a replication of [ZBH*21] by one of its authors [Zhal7]. The
implementation of ResNet-32[HZRS16] is due to [Ide]. I built a wrapper around the SAM training
procedure to allow more flexible experiments to be run from the command line and added functionality
to load in the red noise labels. Experiments were scripted to run unsupervised from a remote terminal.

I also implemented bootstrapping on top of the SGD and SAM training procedures to compare
with [JHLY20]. Bootstrapping is a simple procedure where a given model is first trained on the data,
then trained again using its own predictions on the training set as ground truth labels. The idea is
that training on the predictions acts as a resampling of the random variables that generated the labels
in the first place, and allows the model to better learn the underlying probability distribution of the
data. The downside of bootstrapping — for neural networks at least — is that it requires double the
amount of computation, which can be prohibitively expensive depending on the architecture, for only
marginal gains in performance.

To investigate the behaviour of the neighbourhood size hyperparameter I adapted the learning rate
schedule used in the SAM implementation to generate three schedules for p. The first is an epoch-wise
decay of the neighbourhood size, where:

e for the first 30% of the training run, p retains its initial value
e between 30%-60% of the run, it is reduced by 90% from the initial value;
e for the rest of the run it is reduced a further 90%;

The second is the exponential decay schedule, which implements:

pt = po - exp(—kt) (3)

where k is a hyperparameter that defaults to 0.1. Finally, there is a simple step-increase schedule that
increases the neighbourhood size by a factor of 10 in a similar fashion to the step decay described
above.

4.4 Hardware

The experiments were run on a cloud setup running Ubuntu 20.04 with 40 AMD Epyc Rome vCPUs,
4 nVIDIA A100 for PCle GPUs with 40Gb of VRAM each, 256Gi of RAM and 40Gi of storage. I also
ran some test experiments locally to measure time taken by the different optimiser combinations. For
details on how compute restrictions have affected these experiments, see Section 6.



Optimiser | Train/test | CIFAR-10 | CIFAR-10 | CIFAR-10 | CIFAR-10 | CIFAR-10 | CIFAR-10
clean 18% red | 40% red | 20% blue | 80% blue | 100% blue
noise noise noise noise noise
SGD Train accu- | 100% 99.98% 100% 100% 100% 10.29%
racy
Test accu- | 87.29% 81.67% 55.11% 70.90% 18.32% 10.00%
racy

Table 2: Results of experiments on SGD.

5 Preliminary results

The results obtained so far are unfortunately only a subset of the experiments I would want to carry
out, and do not span the most interesting use cases. I started with SGD on all noise combinations so
that I would have a baseline against which to compare SAM and ASAM. I earmarked the 40% and
60% blue noise cases for later as they were less extreme than the 0%, 20%, 80% and 100% cases, but
in retrospect it would’ve been useful to run the 40% case to compare with the 40% red noise. The test
accuracy gradually decreases as the noise is increased, with the accuracy at 100% noise corresponding
to the 1 in 10 chance of being correct when selecting a random label on CIFAR-10. Interestingly, in the
100% blue noise case, the network struggles to converge. Looking at the full log?, most of the training
seems wasted, in that the highest test accuracy of 11.42% is already reached in epoch 8/200. Two
runs that are almost comparable are the 18% red noise and 20% blue noise settings. To reiterate, red
noise is noise that results from human misclassification of the images, whereas blue noise is a simple
procedure by which a label gets flipped to another random label with probability p before training.
Intuitively, this results in different types of noise, because humans are quite unlikely to label an image
of a man holding a fish as an aeroplane, but they are likely to label the image as fish, when man is
correct, or vice-versa. It seems that in this setting, the converged network is over 10% more accurate
on red noise than on blue noise, indicating that red noise indeed still retains some connection to the
information in the image, whereas blue noise is completely random.

6 Discussion

In this paper I begin to investigate further the behaviour of SAM on image classification with noisy
labels. In [FKMN20], SAM shows good robustness to synthetic noise. Here, I try to look at whether
there are any differences in performance between red and blue noise, as well as at the impact of different
types scheduler for the neighbourhood size. I did not manage to run all the experiments because of
the computational cost of training. The setup detailed in Section 4.4 cost around $10 per hour from a
dedicated cloud provider, and with each experiment taking about 8s per epoch or 27 minutes in total,
the overall cost would have been $1,600.

The authors of [FKMN20] explore applications of SAM to different architectures, but these skew
toward the overparameterised regime where it’s likely that SAM would have a higher impact. As a
result, we don’t know how SAM interacts with smaller networks. For example, I ran some preliminary
experiments on a ~60,000-parameter convolutional network (in the context of CIFAR-10, this should
be just about overparameterised) and did not find a marked improvement of SAM over SGD, although
it didn’t seem like my network was able to converge regardless. Perhaps more training was needed.
Again, the additional cost of SAM in relation to SGD is non-trivial without additional measures to
parallelise training.

7 Further work

This paper does not report conclusive findings due to computational limitations. It was designed as
an open-ended investigation of the behaviour of SAM on noisy labels that started out as an effort to
replicate the findings in the section on robustness to noise in [FKMN20]. The obvious next step would
be to carry out all the experiments, or at least a subset of them that reveal some of the behaviour of

?Logs and code: https://github.com/inwaves/sam-noisy-labels



https://github.com/inwaves/sam-noisy-labels

SAM when using heavily corrupted labels. It is possible to speed up the experiments by implementing
data parallelism between GPU accelerators, as briefly mentioned in §3.1 of the original SAM paper. I
tried to get this to work on my cloud setup, but as it was taking a lot of time I decided to deprioritise
it.

Another interesting avenue of research would be comparing SAM against stochastic weight av-
eraging (SWA)[IPG'18], another optimiser that tends to favour flat minima. SWA is now natively
implemented in Pytorch, making it straightforward to use. It is also potentially faster to run, taking
around the same time as simple SGD. The authors themselves carry out a preliminary analysis in
response to a review|ope], however the results did not make it to the main paper.

I am most excited about the behaviour of the neighbourhood size hyperparameter in practice.
Analysing more closely what sort of values work and which harm performance could serve to show
what sort of “neighbourhoods” each type of task has, and perhaps where they tend to be. Two things
were not explored in the original paper. First, changing the neighbourhood size during training for
the purpose of honing in on a suitable neighbourhood could be useful. This is similar to learning rate
schedules, where the learning rate decays as training goes on. It could be the case that always seeking
the same type of neighbourhood works best. It’s also conceivable that during training, as it becomes
obvious that large flat regions do not exist, an optimiser could do better if it was “satisfied” with a
smaller flat neighbourhood. Second, it would be interesting to perform hyperparameter optimisation of
p in a more concerted way. In the original paper p is chosen through grid search over a set of 6 possible
values equally spaced on a log scale. Given enough computational resources, Bayesian optimisation
using a Gaussian process could yield better results.
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